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1.1 General terms

1.1.1 Cartier divisor

Let KX be the sheaf of total quotients on X, and let O∗X be the sheaf of
non-zero divisors on X. We have an exact sequence

1→ O∗X → KX → KX/O∗X → 1.

Then a Cartier divisor is a global section of the quotient sheaf at the right.

1.1.2 Categorical quotient

Let X be a scheme and G a group. A categorical quotient is a morphism
π : X → Y that satisfies the following two properties:

1. It is invariant, in the sense that π ◦ σ = π ◦ p2 where σ : G×X → X
is the group action, and p2 : G × X → X is the projection. That is,
the following diagram should commute:

G×X σ //

p2
��

// X

π
��

X π
// Y

2. The map π should be universal, in the following sense: If π′ : X → Z
is any morphism satisfying the previous condition, it should uniquely
factor through π. That is:

X

π′

��

π // Y

Z
∃!h

>>

Note: A categorical quotient need not be surjective.
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1.1.3 Chow group

Let X be an algebraic variety. Let Zr(X) be the group of r-dimension cycles
on X, a cycle being a Z-linear combination of r-dimensional subvarieties of
X. If V ⊂ X is a subvariety of dimension r+ 1 and f : X A1 is a rational
function on X, then there is an integer ordW (f) for each codimension one
subvariety of V , the order of vanishing of f . For a given f , there will only
be finitely many subvarieties W for which this number is non-zero. Thus we
can define an element [div(f)] in Zr(X) by

∑
ordW (f)[W ].

We say that two r-cycles U1, U2 are rationally equivalent if there exist r+
1-dimensional subvarieties V1, V2 together with rational functions f1 : V1

A1, f2 : V2 A1 such that U1 − U2 =
∑

i[div(fi)]. The quotient group
is called the Chow group of r-dimensional cycles on X, and denoted by
Ar(X).

1.1.4 Complete variety

Let X be an integral, separated scheme over a field k. Then X is complete
if is proper.

Then Pn is proper over any field, and An is never proper.

1.1.5 Crepant resolution

A crepant resolution is a resolution of singularities f : X → Y that does
not change the canonical bundle, i.e. such that ωX ' f∗ωY .

1.1.6 Dominant map

A rational map f : X Y is dominant if its image (or precisely: the image
of one of its representatives) is dense in Y .

1.1.7 Étale map

A morphism of schemes of finite type f : X → Y is étale if it is smooth of
dimension zero. This is equivalent to f being flat and ΩX/Y = 0. This again
is equivalent to f being flat and unramified.

1.1.8 Genus

The geometric genus of a smooth, algebraic variety, is defined as the num-
ber of sections of the canonical sheaf, that is, as H0(V, ωX). This is often
denoted pX .
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1.1.9 Geometric quotient

Let X be an algebraic variety and G an algebraic group. Then a geometric
quotient is a morphism of varieties π : X → Y such that

1. For each y ∈ Y , the fiber π−1(y) is an orbit of G.

2. The topology of Y is the quotient topology: a subset U of Y is open if
and only if π−1(U) is open.

3. For any open subset U ⊂ Y , π∗ : k[U ]→ k[π−1(U)]G is an isomorphism
of k-algebras.

The last condition may be rephrased as an isomorphism of structure sheaves:
OY ' (π∗OX)G.

1.1.10 Hodge numbers

If X is a complex manifold, then the Hodge numbers hpq of X are defined
as the dimension of the cohomology groups Hq(X,Ωp

X). This is also the
same as the dimensions of the Dolbeault cohomology groups H0(C,Ωp,q)
(the space of (p, q)-forms).

1.1.11 Intersection multiplicity (of curves on a surface)

Let C,D be two curves on a smooth surface X and P is a point on X, then
the intersection multiplicity (C.D)P of C and D at P is defined to be
the length of OP,X /(f, g).

Example: let C,D be the curves C = {y2 = x3} and D = {x = 0}. Then
O0,A2 /(y2 − x3, x) = k[x, y](x,y)/(x, y

2 − x) = k[y](y)/(y
2) = k⊕ y · k, so the

tangent line of the cusp meets it with multiplicity two.

1.1.12 Linear series

A linear series on a smooth curve C is the data (L, V ) of a line bundle on
C and a vector subspace V ⊆ H0(C,L). We say that the linear series (L, V )
have degree degL and rank dimV − 1.

1.1.13 Log structure

A prelog structure on a scheme X is given by a pair (X,M), where X is a
scheme andM is a sheaf of monoids on X (on the Ètale site) together with a
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morphisms α : M → OX . It is a log structure if the map α : α−1 O∗X → O∗X
is an isomorphism.

See [5].

1.1.14 Néron-Severi group

Let X be a nonsingular projective variety of dimension ≥ 2. Then we can
define the subgroup Cl◦X of ClX, the subgroup consisting of divisor classes
algebraically equivalent to zero. Then ClX/Cl◦X is a finitely-generated
group. It is denoted by NS(X).

1.1.15 Normal crossings divisor

Let X be a smooth variety and D ⊂ X a divisor. We say that D is a
simple normal crossing divisor if every irreducible component of D is
smooth and all intersections are transverse. That is, for every p ∈ X we can
choose local coordinates x1, · · · , xn and natural numbers m1, · · · ,mn such
that D = (

∏
i x

mi
i = 0) in a neighbourhood of p.

Then we say that a divisor is normal crossing (without the “simple”)
if the neighbourhood above can is allowed to be chosen locally analytically
or as a formal neighbourhood of p.

Example: the nodal curve y2 = x3 + x2 is a a normal crossing divisor in
C2, but not a simple normal crossing divisor.

This definition is taken from [6].

1.1.16 Normal variety

A variety X is normal if all its local rings are normal rings.

1.1.17 Picard number

ThePicard number of a nonsingular projective variety is the rank of Néron-
Severi group.

1.1.18 Proper morphism

A morphism f : X → Y is proper if it separated, of finite type, and
universally closed.
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1.1.19 Resolution of singularities

A morphism f : X → Y is a resolution of singularities of Y if X is
non-singular and f is birational and proper.

1.1.20 Separated

Let f : X → Y be a morphism of schemes. Let ∆ : X → X ×Y X be the
diagonal morphism. We say that f is separated if ∆ is a closed immersion.
We say that X is separated if the unique morphism f : X → SpecZ is
separated.

This is equivalent to the following: for all open affines U, V ⊂ X, the
intersection U ∩ V is affine and OX(U) and OX(V ) generate OX(U ∩ V ).
For example: let X = P1 and let U1 = {[x : 1]} and U2 = {[1 : y]}. Then
OX(U1) = Spec k[x] and OX(U2) = Spec k[y]. The glueing map is given on
the ring level as x 7→ 1

y . Then OX(U1 ∩ U2) = k[y, 1
y ].

1.1.21 Unirational variety

A variety X is unirational if there exists a generically finite dominant map
Pn X.

1.2 Moduli theory and stacks

1.2.1 Étale site

Let S be a scheme. Then the small étale site over S is the site, denoted
by Ét(S) that consists of all étale morphisms U → S (morphisms being
commutative triangles). Let Cov(U → S) consist of all collections {Ui →
U}i∈I such that ∐

i∈I
Ui → U

is surjective.

1.2.2 Grothendieck topology

Let C be a category. A Grothendieck topology on C consists of a set
Cov(X) of sets of morphisms {Xi → X}i∈I for each X in Ob(C), satisfying
the following axioms:

1. If V ≈−→ X is an isomorphism, then {V → X} ∈ Cov(X).
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2. If {Xi → X}i∈I ∈ Cov(X) and Y → X is a morphism in C, then the
fiber products Xi ×X Y exists and {Xi ×X Y → Y }i∈I ∈ Cov(Y ).

3. If {Xi ∈ X}i∈I ∈ Cov(X), and for each i ∈ I, {Vij → Xi}j∈J ∈
Cov(Xi), then

{Vij → Xi → X}i∈I,j∈J ∈ Cov(X).

The easiest example is this: Let C be the category of open sets on a
topological space X, the morphisms being only the inclusions. Then for each
U ∈ Ob(C), define Cov(U) to be the set of all coverings {Ui → U}i∈I such
that U =

⋃
i∈I Ui. Then it is easily checked that this defines a Grothendieck

topology.

1.2.3 Site

A site is a category equipped with a Grothendieck topology.

1.3 Results and theorems

1.3.1 Adjunction formula

Let X be a smooth algebraic variety Y a smooth subvariety. Let i : Y ↪→ X
be the inclusion map, and let I be the corresponding ideal sheaf. Then
ωY = i∗ωX ⊗OX

det(I/I2)∨, where ωY is the canonical sheaf of Y .
In terms of canonical classes, the formula says that KD = (KX +D)

∣∣
D
.

Here’s an example: Let X be a smooth quartic surface in P3. Then
H1(X,OX) = 0. The divisor class group of P3 is generated by the class of a
hyperplane, and KP3 = −4H. The class of X is then 4H since X is of degree
4. X corresponds to a smooth divisor D, so by the adjunction formula, we
have that

KD = (KP3 +D)
∣∣
D

= −4H + 4H
∣∣
D

= 0.

Thus X is an example of a K3 surface.

1.3.2 Bertini’s Theorem

Let X be a nonsingular closed subvariety of Pnk , where k = k̄. Then the set
of of hyperplanes H ⊆ Pnk such that H ∩ X is regular at every point) and
such that H 6⊆ X is a dense open subset of the complete linear system |H|.
See [4, Thm II.8.18].
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1.3.3 Chow’s lemma

Chow’s lemma says that if X is a scheme that is proper over k, then it is
“fairly close” to being projective. Specifically, we have that there exists a
projective k-scheme X ′ and morphism f : X ′ → X that is birational.

So every scheme proper over k is birational to a projective scheme. For
a proof, see for example the Wikipedia page.

1.3.4 Euler sequence

If A is a ring and PnA is projective n-space over A, then there is an exact
sequence of sheaves on X:

0→ ΩPn
A/A
→ OPn

A
(−1)n+1 → OPn

A
→ 0.

See [4, Thm II.8.13].

1.3.5 Genus-degree formula

If C is a smooth plane curve, then its genus can be computed as

gC =
(d− 1)(d− 2)

2
.

This follows from the adjunction formula. In particular, there are no curves
of genus 2 in the plane.

1.3.6 Hirzebruch-Riemann-Roch formula

Let X be a nonsingular variety and let TX be its tangent bundle. Let E be
a locally free sheaf on X. Then

χ(E ) = deg (ch(E ) · td(T ))n,

where χ is the Euler characteristic, ch denotes the Chern class, and td de-
notes the Todd class. See [4, Appendix A].

1.3.7 Hurwitz’ formula

Let X,Y be smooth curves in the sense of Hartshorne. That is, they are
integral 1-dimensional schemes, proper over a field k (with k̄ = k), all of
whose local rings are regular.
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Then Hurwitz’ formula says that if f : X → Y is a separable morphism
and n = deg f , then

2(gX − 1) = 2n(gY − 1) + degR,

where R is the ramification divisor of f , and gX , gY are the genera of X and
Y , respectively. See Example 7.1.1.

1.3.8 Kodaira vanishing

If k is a field of characteristic zero, X is a smooth and projective k-scheme of
dimension d, and L is an ample invertible sheaf onX, thenHq(X,L ⊗OX

Ωp
X/k) = 0

for p+ q > d. In addition, Hq(X,L−1 ⊗OX
Ωp
X/k) = 0 for p+ q < d.

1.3.9 Lefschetz hyperplane theorem

Let X be an n-dimensional complex projective algebraic variety in PNC and
let Y be a hyperplane section of X such that U = X\Y is smooth. Then
the natural map Hk(X,Z)→ Hk(Y,Z) in singular cohomology is an isomor-
phism for k < n− 1 and injective for k = n− 1.

1.3.10 Riemann-Roch for curves

The Riemann-Roch theorem relates the number of sections of a line bun-
dle with the genus of a smooth proper curve C. Let L be a line bundle ωC
the canonical sheaf on C. Then

h0(C,L)− h0(C,L−1 ⊗OC
ωC) = deg(L) + 1− g.

This is [4, Theorem IV.1.3].

1.3.11 Semi-continuity theorem

Let f : X → Y be a projective morphism of noetherian schemes, and let F
be a coherent sheaf on X, flat over Y . Then for each i ≥ 0, the function
hi(y,F ) = dimk(y)H

i(Xy,F y) is an upper semicontinuous function on Y .
See [4, Chapter III, Theorem 12.8].

1.3.12 Serre duality

Let X be a projective Cohen-Macaulay scheme of equidimension n. Then
for any locally free sheaf F on X there are natural isomorphisms

H i(X,F) ' Hn−i(X,F∨ ⊗ ω◦X).
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Here ω◦X is a dualizing sheaf for X. In the case that X is nonsingular, we
have that ω◦X ' ωX , the canonical sheaf on X (see [4, Chapter III, Corollary
7.12]).

1.3.13 Serre vanishing

One form of Serre vanishing states that if X is a proper scheme over a
noetherian ring A, and L is an ample sheaf, then for any coherent sheaf F
on X, there exists an integer n0 such that for each i > 0 and n ≥ n0 the
group H i(X,F ⊗OX

Ln) = 0 vanishes. See [4, Proposition III.5.3].

1.3.14 Weil conjectures

The Weil conjectures is a theorem relating the properties of a variety over
finite fields with its properties over fields over characteristic zero.

Specifically, let

ζ(X, s) = exp

( ∞∑
m=1

Nm

m
q−sm

)
be the zeta function of X (with respect to q). Nm is the number of points
of X over Fqn . Then the Weil conjectures are the following four statements:

1. The zeta function ζ(X, s) is a rational function of T = q−s:

ζ(X,T ) =

2n∏
i=1

Pi(T )(−1)i+1
,

where the Pi’s are integral polynomials. Furthermore, P0(T ) = 1 − T
and P2n(T ) = 1− qnT . For 1 ≤ i ≤ 2n− 1, Pi(T ) factors as Pj(T ) =∏

(1− αijT ) over C.

2. There is a functional equation. Let E be the topological Euler charac-
teristic of X. Then

ζ(X, q−nT−1) = ±q
nE
2 TEζ(X,T ).

3. A “Riemann hypothesis”: |αij | = qi/2 for all 1 ≤ i ≤ 2n − 1 and all
j. This implies that the zeroes of Pk(T ) all lie on the critical line
<(z) = k/2.

4. If X is a good reduction modulo p, then the degree of Pi is equal to
the i’th Betti number of X, seen as a complex variety.
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1.4 Sheaves and bundles

1.4.1 Ample line bundle

A line bundle L is ample if for any coherent sheaf F on X, there is an
integer n (depending on F ) such that F ⊗OX

L⊗n is generated by global
sections. Equivalently, a line bundle L is ample if some tensor power of it is
very ample.

1.4.2 Invertible sheaf

A locally free sheaf of rank 1 is called invertible. If X is normal, then,
invertible sheaves are in 1− 1 correspondence with line bundles.

1.4.3 Anticanonical sheaf

The anticanonical sheaf ω−1
X is the inverse of the canonical sheaf ωX , that

is ω−1
X = Hom OX

(ωX ,OX).

1.4.4 Canonical class

The canonical class KX is the class of the canonical sheaf ωX in the divisor
class group.

1.4.5 Canonical sheaf

If X is a smooth algebraic variety of dimension n, then the canonical sheaf
is ω := ∧nΩ1

X/k the n’th exterior power of the cotangent bundle of X.

1.4.6 Nef divisor

LetX be a normal variety. Then a Cartier divisorD onX is nef (numerically
effective) if D · C ≥ 0 for every irreducible complete curve C ⊆ X. Here
D · C is the intersection product on X defined by deg(φ∗OX(D)). Here
φ : C ′ → C is the normalization of C.

1.4.7 Sheaf of holomorphic p-forms

If X is a complex manifold, then the sheaf of of holomorphic p-forms
Ωp
X is the p-th wedge power of the cotangent sheaf ∧pΩ1

X .
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1.4.8 Normal sheaf

Let Y ↪→ X be a closed immersion of schemes, and let I ⊆ OX be the ideal
sheaf of Y in X. Then I/I2 is a sheaf on Y , and we define the sheaf NY/X
by Hom OY

(I/I2,OY ).

1.4.9 Rank of a coherent sheaf

Given a coherent sheaf F on an irreducible variety X, form the sheaf
F ⊗OX

KX . Its global sections is a finite dimensional vector space, and
we say that F has rank r if dimk Γ(X,F ⊗OX

KX) = r.

1.4.10 Reflexive sheaf

A sheaf F is reflexive if the natural map F → F∨∨ is an isomorpism.
Here F∨ denotes the sheaf Hom OX

(F ,OX).

1.4.11 Very ample line bundle

A line bundle L is very ample if there is an embedding i : X ↪→ PnS such
that the pullback of OPn

S
(1) is isomorphic to L. In other words, there should

be an isomorphism i∗OPn
S
(1) ' L.

1.5 Singularities

1.5.1 Canonical singularities

A variety X has canonical singularities if it satisfies the following two
conditions:

1. For some integer r ≥ 1, the Weil divisor rKX is Cartier (equivalently,
it is Q-Cartier).

2. If f : Y → X is a resolution of X and {Ei} the exceptional divisors,
then

rKY = f∗(rKX) +
∑

aiEi

with ai ≥ 0.

The integer r is called the index, and the ri are called the discrepancies at
Ei.
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1.5.2 Terminal singularities

A variety X have terminal singularities if the ai in the definition of canon-
ical singularities are all greater than zero.

1.5.3 Ordinary double point

An ordinary double point is a singularity that is analytically isomorphic
to x2 = yz.

1.6 Toric geometry

1.6.1 Chow group of a toric variety

The Chow group An−1(X) of a toric variety can be computed directly from
its fan. Let Σ(1) be the set of rays in Σ, the fan of X. Then we have an
exact sequence

0→M → ZΣ(1) → An−1(X)→ 0.

The first map is given by sending m ∈ M to (〈m, vp〉)ρ∈Σ(1), where vp is
the unique generator of the semigroup ρ ∩ N . The second map is given by
sending (aρ)ρ∈Σ(1) to the divisor class of

∑
ρ aρDρ.

1.6.2 Generalized Euler sequence

The generalized Euler sequence is a generalization of the Euler sequence
for toric varieties. If X is a smooth toric variety, then its cotangent bundle
Ω1
X fits into an exact sequence

0→ Ω1
X → ⊕ρ OX(−Dρ)→ Pic(X)⊗Z OX → 0.

Here Dρ is the divisor corresponding to the ray ρ ∈ Σ(1). See [2, Chapter
8].

1.6.3 Polarized toric variety

A toric variety equipped with an ample T -invariant divisor.

1.6.4 Toric variety associated to a polytope

There are several ways to do this. Here is one: Let ∆ ⊂ MR be a convex
polytope. Embed ∆ in MR × R by ∆ × {1} and let C∆ be the cone over
∆ × {1}, and let C[C∆ ∩ (M × Z)] be the corresponding semigroup ring.
This is a semigroup ring graded by the Z-factor. Then we define P∆ =
ProjC[C∆ ∩ (M × Z)] to be the toric variety associated to a polytope.
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1.7 Types of varieties

1.7.1 Abelian variety

A varietyX is an abelian variety if it is a connected and complete algebraic
group over a field k. Examples include elliptic curves and for special lattices
Λ ⊂ C2g, the quotient C2g/Λ is an abelian variety.

1.7.2 Calabi-Yau variety

In algebraic geometry, a Calabi-Yau variety is a smooth, proper variety X
over a field k such that the canonical sheaf is trivial, that is, ωX ' OX , and
such that Hj(X,OX) = 0 for 1 ≤ j ≤ n− 1.

1.7.3 Conifold

In the physics literature, a conifold is a complex analytic space whose only
singularities are ordinary double points.

1.7.4 del Pezzo surface

A del Pezzo surface is a 2-dimensional Fano variety. In other words, they
are complete non-singular surfaces with ample anticanonical bundle. The
degree of the del Pezzo surface X is by definition the self intersection number
K.K of its canonical class K.

1.7.5 Elliptic curve

An elliptic curve is a smooth, projective curve of genus 1. They can all
be obtained from an equation of the form y2 = x3 + ax + b such that ∆ =
−24(4a3 + 27b2) 6= 0.

1.7.6 Elliptic surface

An elliptic surface is a smooth surface X with a morphism π : X → B onto
a non-singular curve B whose generic fiber is a non-singular elliptic curve.

1.7.7 Fano variety

A variety X is Fano if the anticanonical sheaf ω−1
X is ample.

14



1.7.8 Jacobian variety

Let X be a curve of genus g over k. The Jacobian variety of X is a
scheme J of finite type over k, together with an element L ∈ Pic◦(X/J),
with the following universal property: for any scheme T of finite type over
k and for anyM ∈ Pic◦(X/T ), there is a unique morphism f : T → J such
that f∗L ' M in Pic◦(X/T ). This just says that J represents the functor
T 7→ Pic◦(X/T ).

If J exists, its closed points are in 1− 1 correspondence with elements of
Pic◦(X).

It can be checked that J is actually a group scheme. For details, see [4,
Ch. IV.4].

1.7.9 K3 surface

A K3 surface is a complex algebraic surface X such that the canonical
sheaf is trivial, ωX ' OX , and such that H1(X,OX) = 0. These conditions
completely determine the Hodge numbers of X.

1.7.10 Stanley-Reisner scheme

A Stanley-Reisner scheme is a projective variety associated to a simplicial
complex as follows. Let K be a simplicial complex. Then we define an ideal
IK ⊆ k[xv | v ∈ V (K)] = k[x] (here V (K) denotes the vertex set of K) by

IK = 〈xvi1xvi2 · · ·xvik | vi1vi2 · · · vik 6∈ K〉.

We get a projective scheme P(K) defined by Proj (k[x]/IK), together
with an embedding into P#V (K)−1. It can be shown that Hp(P(K),OP(K)) '
Hp(K; k), where the right-hand-side denotes the cohomology group of the
simplicial complex.

1.7.11 Toric variety

A toric variety X is an integral scheme containing the torus (k∗)n as a
dense open subset, such that the action of the torus on itself extends to an
action (k∗)n ×X → X.
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2 Category theory

2.1 Basisc concepts

2.1.1 Adjoints pair

Let C, C′ be categories. Let F : C → C′ and F ′ : C′ → C be functors. We call
(F, F ′) an adjoint pair, or that F is left adjoint to F ′ (or F′ right adjoint)
if for each A ∈ C and A′ ∈ C′, we have a natural bijection

HomC′(F (A), A′) ' HomC(A,F
′(A′)).

The naturality condition assures us that adjoints are unique up to isomor-
phism.

2.2 Limits

2.2.1 Direct limit

2.2.2 Filtered category

A category J is filtered when it satisfies the following three conditions: 1)
it is non-empty. 2) For every two objects j, j′ ∈ ob(J), there exists an object
k ∈ ob(J) and two arrows f : j → k and f : j′ → k. 3) For every two parallel
arrows u, v : i→ j there exists an object w ∈ ob(J) and an arrow w : j → k
such that wu = wv.

j

∃

��
k i

u
  

v

>> j
∃ // w

j′

∃
@@

3 Commutative algebra

3.1 Linear algebra

3.1.1 Pfaffians

LetM be a skew-symmetric matrix. Then the determinant is always square,
and its square root is called the Pfaffian of the matrix. More formally, if
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A = (aij) is a 2n× 2n matrix, then the Pfaffian is defined as

pf(A) =
1

2nn!

∑
σ∈Sn

n∏
i=1

aσ(2i−1),σ(2i).

If M is a matrix over a polynomial ring, by removing rows and columns
with the same indices, one obtains a new skew-symmetric matrix. This way,
one can form the ideal generated by the m×m Pfaffians for m < 2n.

3.2 Modules

3.2.1 Depth

Let R be a noetherian ring, and M a finitely-generated R-module and I an
ideal of R such that IM 6= M . Then the I-depth of M is (see Ext):

inf{i | ExtiR(R/I,M) 6= 0}.

This is also the length of a maximal M -sequence in I.

3.2.2 M-sequence

Let M be an A-module and x ∈ A. We say that x is M-regular if multipli-
cation by x is injective on M . We say that a sequence of elements a1, . . . , ar
is an M-sequence if

• a1 isM -regular, a2 isM/a1M -regular, a3 isM/(a1, a2)M -regular, and
so on.

• M/
∑

i aiM 6= 0.

The length of a maximal M -sequence is the depth of M .

3.2.3 Rank

If R has the invariant basis property (IBN), then we define the rank of a
free module to be the cardinality of any basis.

3.2.4 Stably free module

A module M is stably free (of rank n −m) if P ⊕ Rn ' Rn for some m
and n.

17



3.2.5 Kähler differentials

Let A→ B be a ring homomorphism. Themodule of Kähler differentials
ΩB/A is the module together with a map d : B → ΩB/A satisfying the
following universal property: if D : B → M is any A-linear derivation
(an element of DerA(B,M)), then there is a unique module homomorphism
D̃ : ΩB/A →M such that

B
d //

D ""

ΩB/A

D̃
��
M

is commutative. Thus we have a natural isomorphism DerA(B,M) = HomB(ΩB/A,M).
In the language of category theory, this means that DerA(B,−) is corepre-
sented by ΩB/A.

A concrete construction of ΩB/A is given as follows. LetM be the free B-
module generated by all symbols df , where f ∈ B. Let N be the submodule
generated by da if a ∈ A, d(f + g) − df − dg and the Leibniz rule d(fg) −
fdg − gdf . Then M/N ' ΩB/A as B-modules.

3.3 Results and theorems

3.3.1 The conormal sequence

The conormal sequence is a sequence relating Kähler differentials in dif-
ferent rings. Specifically, if A → B → 0 is a surjection of rings with kernel
I, then we have an exact sequence of B-modules:

I/I2 d // B ⊗A ΩB/A
Dπ // ΩT/R → 0

The map d sends f 7→ 1⊗ df , and Dπ sends c⊗ db 7→ cdb. For proof, see [3,
Chapter 16].

3.3.2 Determinant of an exact sequence

Suppose we have an exact sequence of free R-modules:

0→ L→M → N → 0,

of ranks l,m and n, respectively. Then there is a natural isomorphism
∧mM ' ∧LlN ⊗R ∧nN . This is used in proving the adjunction formula.

18



3.3.3 The Unmixedness Theorem

Let R be a ring. If I = 〈x1, · · · , xn〉 is an ideal generated by n elements such
that codim I = n, then all minimal primes of I have codimension n. If in
addition R is Cohen-Macaulay, then every associated prime of I is minimal
over I. See the discussion after [3, Corollary 18.14] for more details.

3.4 Rings

3.4.1 Cohen-Macaulay ring

A local Cohen-Macaulay ring (CM-ring for short) is a commutative noethe-
rian local ring with Krull dimension equal to its depth. A ring is Cohen-
Macaulay if its localization at all prime ideals are Cohen-Macaulay.

3.4.2 Depth of a ring

The depth of a ring R is is its depth as a module over itself.

3.4.3 Gorenstein ring

A commutative ring R is Gorenstein if each localization at a prime ideal is
a Gorenstein local ring. A Gorenstein local ring is a local ring with finite
injective dimension as an R-module. This is equivalent to the following:
ExtiR(k,R) = 0 for i 6= n and ExtnR(k,R) ' k (here k = R/m and n is the
Krull dimension of R).

3.4.4 Invariant basis property

A ring R satisfies the invariant basis property (IBP) if Rn 6' Rn+t R-
modules for any t 6= 0. Any commutative ring satisfies the IBP.

3.4.5 Normal ring

An integral domain R is normal if all its localizations at prime ideals
p ∈ SpecR are integrally closed domains.
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4 Convex geometry

4.1 Cones

4.1.1 Gorenstein cone

A strongly convex cone C ⊂MR is Gorenstein if there exists a point n ∈ N
in the dual lattice such that 〈v, n〉 = 1 for all generators of the semigroup
C ∩M .

4.1.2 Reflexive Gorenstein cone

A cone C is reflexive if both C and its dual C∨ are Gorenstein cones. See
for example [1].

4.1.3 Simplicial cone

A cone C generated by {v1, · · · , vk} ⊆ NR is simplicial if the vi are linearly
independent.

4.2 Polytopes

4.2.1 Dual (polar) polytope

If ∆ is a polyhedron, its dual ∆◦ is defined by

∆◦ = {x ∈ NR | 〈x, y〉 ≥ −1 ∀ y ∈ ∆} .

4.2.2 Gorenstein polytope of index r

A lattice polytope P ⊂ Rd+r−1 is called a Gorenstein polytope of index
r if rP contains a single interior lattice point p and rP − p is a reflexive
polytope.

4.2.3 Nef partition

Let ∆ ⊂MR be a d-dimensional reflexive polytope, and let m = int(∆)∩M .
A Minkowski sum decomposition ∆ = ∆1 + . . . + ∆r where ∆1, . . . ,∆r are
lattice polytopes is called a nef partition of ∆ of length r if there are
lattice points pi ∈ ∆i for all i such that p1 + · · ·+ pr = m. The nef partition
is called centered if pi = 0 for all i.

This is equivalent to the toric divisor Dj = O(∆i) =
∑

ρ∈∆i
Dρ being a

Cartier divisor generated by its global sections. See [1, Chapter 4.3].
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4.2.4 Reflexive polytope

A polytope ∆ is reflexive if the following two conditions hold:

1. All facets Γ of ∆ are supported by affine hyperplanes of the form
{m ∈MR | 〈m, vΓ〉 = −1} for some vΓ ∈ N .

2. The only interior point of ∆ is 0, that is: Int(∆) ∩M = {0}.

It can be proved that a polytope ∆ is reflexive if and only if the associated
toric variety P∆ is Fano.

5 Homological algebra

5.1 Classes of modules

5.1.1 Projective modules

Projective modules are those satisfying a universal lifting property. A module
P is projective if for every epimorphism α : M → N and every map,
β : P → N , there exists a map γ : P →M such that β = α ◦ γ.

P
∃γ

~~
β
��

M
α // // N // 0

These are the modules P such that Hom(P,−) is exact.

5.2 Derived functors

5.2.1 Ext

Let R be a ring and M,N be R-modules. Then ExtiR(M,N) is the right-
derived functors of the Hom(M,−)-functor. In particular, ExtiR(M,N) can
be computed as follows: choose a projective resolution C. of N over R.
Then apply the left-exact functor HomR(M,−) to the resolution and take
homology. Then ExtiR(M,N) = hi(C.).

5.2.2 Local cohomology

Let R be a ring and I ⊂ R an ideal. Let ΓI(−) be the following functor on
R-modules:

ΓI(M) = {f ∈M | ∃n ∈ N, s.t.Inf = 0} .
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Then H i
I(−) is by definition the ith right derived functor of ΓI . In the case

that R is noetherian, we have H i
I(M) = lim−→ExtiR(R/In,M).

See [3] and [7] for more details.

5.2.3 Tor

Let R be a ring and M,N be R-modules. Then ToriR(M,N) is the right-
derived functors of the − ⊗R N -functor. In particular ToriR(M,N) can be
computed by taking a projective resolution of M , tensoring with N , and
then taking homology.

6 Differential and complex geometry

6.1 Definitions and concepts

6.1.1 Almost complex structure

An almost complex structure on a manifold M is a map J : T (M) →
T (M) whose square is −1.

6.1.2 Connection

Let E → M be a vector bundle over M . A connection is a R-linear map
∇ : Γ(E)→ Γ(E ⊗ T ∗M) such that the Leibniz rule holds:

∇(fσ) = f∇(σ) + σ ⊗ df

for all functions f : M → R and sections σ ∈ Γ(E).

6.1.3 Hermitian manifold

A Hermitian metric on a complex vector bundle E over a manifold M is a
positive-definite Hermitian form on each fiber. Such a metric can be written
as a smooth section Γ(E ⊗ Ē)∗, such that hp(η, ζ̄) = ¯hp (ζ, ¯)η for all p ∈M ,
and such that hp(η, η̄) > 0 for all p ∈ M . A Hermitian manifold is a
complex manifold with a Hermitian metric on its holomorphic tangent space
T (1,0)(M).

6.1.4 Kähler manifold

A Kahler manifold is a Hermitian manifold (that is, a complex manifold
equipped with a Hermitian metric at every complex tangent space) such that
its associated Hermitian form is closed.
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6.1.5 Morse function

AMorse function f : M → R on a manifoldM is a smooth function whose
Hessian matrix is no-where singular. The set of Morse functions forms a
dense open set on C∞(M) in the C2-topology.

The Morse lemma states that a Morse function can be written as

f(x) = f(b)− x2
1 − x2

2 − . . .− x2
α + x2

α+1 + . . .+ x2
n

such that f(x) = 0, in a neighbourhood of a point x ∈M . The number α is
called the index of f at b.

Let Ma = f−1((−∞, a]). The first of the two fundamental theorems
of Morse theory says the following: suppose f is a Morse function and
f−1([a, b]) is compact, and that there are no critical values of f in [a, b],
then Ma is diffeomorphic to M b and M b deformation retracts onto Ma.

The other theorem says the following: let f be a Morse function and let
p be a critical point of f of index γ, and that f(p) = q. Suppose also that
f−1([q − ε, q + ε]) is compact and contains no other critical points. Then
M q+ε is homotopy equivalent to M q−ε with a γ-cell attached.

Thus Morse functions are nice for studying the topology of manifolds.

6.1.6 Symplectic manifold

A 2n-dimensional manifold M is symplectic if it is compact and oriented
and has a closed real two-form ω ∈

∧2 T ∗(M) which is nondegenerate, in
the sense that ∧nω

∣∣
p
6= 0 for all p ∈M .

6.2 Results and theorems

7 Worked examples

7.1 Algebraic geometry

7.1.1 Hurwitz formula and Kähler differentials

Let X be the conic in P2 given with ideal sheaf 〈xz − y2〉. Let Y be P1,
and consider the map f : X → Y given by projection onto the xz-line.
X is covered by two affine pieces, namely X = Ux ∪ Uz, the spectra of
the homogeneous localizations at x, z, respectively. Let Ux = SpecA for
A = k[z] and Uz = SpecB for B = k[x]. Then the map is locally given
by A → k[y, z]/(z − y2) where z 7→ z̄, and similarly for B. We have an
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isomorphism k[y, z]/(z − y2) ' k[t], given by y 7→ t and z 7→ t2, so that
locally the map is given by k[z]→ k[t], z 7→ t2.

This is a map of smooth projective curves, so we can apply Hurwitz’
formula. Both X,Y are P1, so both have genus zero. Hence Hurwitz formula
says that

−2 = −n · 2 + degR,

where R is the ramification divisor and n is the degree of the map. The
degree of the map can be defined locally, and it is the degree of the field
extension k(Y ) ↪→ k(X). But (the image of) k(Y ) = k(t2) and k(X) = k(t),
so that [k(Y ) : k(X)] = 2. Hence by Hurwitz’ formula, we should have
degR = 2. Since R =

∑
P∈X length ΩX/Y P

· P , we should look at the sheaf
of relative differentials ΩY/X .

First we look in the chart Uz. We compute that Ωk[t]/k[t2] = k[t]/(t).
This follows from the relation d(t2) = 2dt, implying that dt = 0 in Ωk[t]/k[t2].
This module is zero localized at all primes but (t), where it is k. Thus for
P = (0 : 0 : 1), we have length ΩX/Y P

= 1.
The situation is symmetric with z ↔ x, so that we have R = (0 : 0 :

1) + (1 : 0 : 0), confirming that degR = 2.
In fact, the curve C is isomorphic to P1 via the map P1 → C given by

(s : t) 7→ (s2 : st : t2). Identifying C with P1, we thus see that C → P1

correspond to the map P1 → P1 given by (s : t) 7→ (s2 : t2).

7.2 The quintic threefold

Let Y be a the zeroes of a general hypersurface of degree 5 in P4, or in other
words, a section of ω∨P4 . We want to compute the cohomology of Y and its
Hodge numbers. Let P = P4.

We have the ideal sheaf sequence

0→ I → OP → i∗OY → 0,

where i : Y → P4 is the inclusion. Note that I = OP(−5). Thus we have
from the long exact sequence of cohomology that

· · · → H i(P,I )→ H i(P,OP)→ H i(Y,OY )→ H i+1(P,I )→ · · ·

Note that H i+1(P,I ) = 0 for i 6= 3 and 1 for i = 3. Also H i(P,OP) = 0
unless i = 0 in which case it is 1. Thus we get that H i(Y,OY ) is k for i = 0,
for i = 1, 2 it is 0, and for i = 3 it is k. For higher i it is zero by Grothendieck
vanishing.
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The adjunction formula relates the canonical bundles as follows: if ωP
is the canonical bundle on P, then ωY = i∗ωP ⊗OP det(I /I 2)∨. The ideal
sheaf is already a line bundle, so taking the determinant does not change
anything. Now

(I /I 2)∨ = Hom Y (I /I 2,OY )

= Hom P(I ,OY ) = Hom P(OP(−5),OY ) = OY (5).

It follows that ωY = OY (−5)⊗ OY (5) = OY . Thus the canonical bundle is
trivial and we conclude that Y is Calabi-Yau.

It remains to compute the Hodge numbers. We start with h11 = dimkH
1(Y,ΩY ).

We have the conormal sequence of sheaves on Y :

0→ I /I 2 → ΩP ⊗ OY → ΩY → 0,

which gives us the long exact sequence:

· · · → H i(I /I 2)→ H i(ΩP ⊗ OY )→ H i(ΩY )→ H i+1(I /I 2)→ · · ·

Since I /I 2 = OY (−5), we can compute its cohomology by twisting the
ideal sequence:

0→ OP(−10)→ OP(−5)→ I /I 2 → 0 (1)

It follows from the cohomology of P4 that hi(I /I 2) = 0 for i = 0, 1, 2. But
for i = 3 we get the sequence

0→ H3(Y,OOY (−5))→ H4(P,OP(−10))→ H4(P,OP(−5))→ 0.

By adjunction it follows that h3(I /I 2) = 126− 1 = 125.
It follows from these calculations and the conormal sequence thatH1(ΩY ) '

H1(ΩP ⊗ OY ). We have the Euler sequence:

0→ ΩP → OP(−1)⊕5 → OP → 0

Now OY = OP /I is a flat OP-module since I is principal and generated
by a non-zero divisor. Thus we can tensor the Euler sequence with OY and
get

0→ ΩP ⊗ OY → OY (−1)5 → OY → 0,

from which it easily follows that H1(Y,ΩP ⊗ OY ) ' H0(OY ) = k. We
conclude that h11 = 1.
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Now we compute h12 = dimkH
1(Y,Ω2

Y ). This is equal to H2(Y,ΩY ) by
Serre duality. Again we use the conormal sequence. From the Euler sequence
we get that H2(Y,ΩP⊗OY ) = 0. We also get that h3(Y,ΩP⊗OY ) = 24. By
complex conjugation, we have that hpq = hqp, so that H3(ΩY ) = H1(Ω3) =
H1(ωY ) = H1(OY ) = 0. We conclude that

h12 = h3(I /I 2)− h3(ΩP ⊗ OY ) = 125− 24 = 101.

This example is extremely important in mirror symmetry.

7.3 A non-flat morphism

Let A = k[x] and B = k[x, y]/(xy). Let f : A→ B be the inclusion x 7→ x.
This corresponds the projection of union of the x and y axis to the x-axis. I
claim that B is not a flat A-module. For, start with the exact sequence

0→ 〈x〉 → A→ A/〈x〉k → 0.

Tensor this sequence with B:

0→ 〈x〉 ⊗B → A⊗A B = B → k ⊗B → 0.

Then take x ⊗ y ∈ 〈x〉 ⊗ B. This element is mapped to xy = 0 ∈ B.
I claim that this is non-zero, hence the map is non-injective, proving non-
flatness. Note that B has a basis as a k-vector space given by the powers
{xi, yj}, where i, j = 0, 1, 2, . . .. Hence 〈x〉 ⊗ B has a basis as a k-vector
space by xk ⊗ yl. Hence the expression of x ⊗ y as a pure tensor is unique,
so that it cannot be zero.
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