Algebraic Geometry Buzzlist

Fredrik Meyer

1 Algebraic Geometry
Contents
1 Algebraic Geometry 1
1.1 General terms 2
1.2 Moduli theory and stacks 6
1.3 Results and theorems 7
1.4 Sheaves and bundles 11
1.5 Singularities 12
1.6 Toric geometry 13
1.7 Types of varieties 14
2 Category theory 16
2.1 Basisc concepts 16
2.2 Limits 16
3 Commutative algebra 16
3.1 Linear algebra 16
3.2 Modules 17
3.3 Results and theorems 18
3.4 Rings 19
4 Convex geometry 20
4.1 Cones 20
4.2 Polytopes 20
5 Homological algebra 21
5.1 Classes of modules 21
5.2 Derived functors 21
6 Differential and complex geometry 22
6.1 Definitions and concepts 22
6.2 Results and theorems 23
7 Worked examples 23
7.1 Algebraic geometry 23
7.2 The quintic threefold 24
7.3 A non-flat morphism 26

1.1 General terms

1.1.1 Cartier divisor

Let \mathcal{K}_{X} be the sheaf of total quotients on X, and let \mathscr{O}_{X}^{*} be the sheaf of non-zero divisors on X. We have an exact sequence

$$
1 \rightarrow \mathscr{O}_{X}^{*} \rightarrow \mathcal{K}_{X} \rightarrow \mathcal{K}_{X} / \mathscr{O}_{X}^{*} \rightarrow 1
$$

Then a Cartier divisor is a global section of the quotient sheaf at the right.

1.1.2 Categorical quotient

Let X be a scheme and G a group. A categorical quotient is a morphism $\pi: X \rightarrow Y$ that satisfies the following two properties:

1. It is invariant, in the sense that $\pi \circ \sigma=\pi \circ p_{2}$ where $\sigma: G \times X \rightarrow X$ is the group action, and $p_{2}: G \times X \rightarrow X$ is the projection. That is, the following diagram should commute:

2. The map π should be universal, in the following sense: If $\pi^{\prime}: X \rightarrow Z$ is any morphism satisfying the previous condition, it should uniquely factor through π. That is:

Note: A categorical quotient need not be surjective.

1.1.3 Chow group

Let X be an algebraic variety. Let $Z_{r}(X)$ be the group of r-dimension cycles on X, a cycle being a \mathbb{Z}-linear combination of r-dimensional subvarieties of X. If $V \subset X$ is a subvariety of dimension $r+1$ and $f: X \rightarrow \mathbb{A}^{1}$ is a rational function on X, then there is an integer $\operatorname{ord}_{W}(f)$ for each codimension one subvariety of V, the order of vanishing of f. For a given f, there will only be finitely many subvarieties W for which this number is non-zero. Thus we can define an element $[\operatorname{div}(f)]$ in $Z_{r}(X)$ by $\sum \operatorname{ord}_{W}(f)[W]$.

We say that two r-cycles U_{1}, U_{2} are rationally equivalent if there exist $r+$ 1-dimensional subvarieties V_{1}, V_{2} together with rational functions $f_{1}: V_{1} \rightarrow$ $\mathbb{A}^{1}, f_{2}: V_{2} \rightarrow \mathbb{A}^{1}$ such that $U_{1}-U_{2}=\sum_{i}\left[\operatorname{div}\left(f_{i}\right)\right]$. The quotient group is called the Chow group of r-dimensional cycles on X, and denoted by $A_{r}(X)$.

1.1.4 Complete variety

Let X be an integral, separated scheme over a field k. Then X is complete if is proper.

Then \mathbb{P}^{n} is proper over any field, and \mathbb{A}^{n} is never proper.

1.1.5 Crepant resolution

A crepant resolution is a resolution of singularities $f: X \rightarrow Y$ that does not change the canonical bundle, i.e. such that $\omega_{X} \simeq f^{*} \omega_{Y}$.

1.1.6 Dominant map

A rational map $f: X \rightarrow-Y$ is dominant if its image (or precisely: the image of one of its representatives) is dense in Y.

1.1.7 Étale map

A morphism of schemes of finite type $f: X \rightarrow Y$ is étale if it is smooth of dimension zero. This is equivalent to f being flat and $\Omega_{X / Y}=0$. This again is equivalent to f being flat and unramified.

1.1.8 Genus

The geometric genus of a smooth, algebraic variety, is defined as the number of sections of the canonical sheaf, that is, as $H^{0}\left(V, \omega_{X}\right)$. This is often denoted p_{X}.

1.1.9 Geometric quotient

Let X be an algebraic variety and G an algebraic group. Then a geometric quotient is a morphism of varieties $\pi: X \rightarrow Y$ such that

1. For each $y \in Y$, the fiber $\pi^{-1}(y)$ is an orbit of G.
2. The topology of Y is the quotient topology: a subset U of Y is open if and only if $\pi^{-1}(U)$ is open.
3. For any open subset $U \subset Y, \pi^{*}: k[U] \rightarrow k\left[\pi^{-1}(U)\right]^{G}$ is an isomorphism of k-algebras.

The last condition may be rephrased as an isomorphism of structure sheaves: $\mathscr{O}_{Y} \simeq\left(\pi_{*} \mathscr{O}_{X}\right)^{G}$.

1.1.10 Hodge numbers

If X is a complex manifold, then the Hodge numbers $h^{p q}$ of X are defined as the dimension of the cohomology groups $H^{q}\left(X, \Omega_{X}^{p}\right)$. This is also the same as the dimensions of the Dolbeault cohomology groups $H^{0}\left(C, \Omega^{p, q}\right)$ (the space of (p, q)-forms).

1.1.11 Intersection multiplicity (of curves on a surface)

Let C, D be two curves on a smooth surface X and P is a point on X, then the intersection multiplicity $(C . D)_{P}$ of C and D at P is defined to be the length of $\mathscr{O}_{P, X} /(f, g)$.

Example: let C, D be the curves $C=\left\{y^{2}=x^{3}\right\}$ and $D=\{x=0\}$. Then $\mathscr{O}_{0, \mathbb{A}^{2}} /\left(y^{2}-x^{3}, x\right)=k[x, y]_{(x, y)} /\left(x, y^{2}-x\right)=k[y]_{(y)} /\left(y^{2}\right)=k \oplus y \cdot k$, so the tangent line of the cusp meets it with multiplicity two.

1.1.12 Linear series

A linear series on a smooth curve C is the data (\mathcal{L}, V) of a line bundle on C and a vector subspace $V \subseteq H^{0}(C, \mathcal{L})$. We say that the linear series (\mathcal{L}, V) have degree $\operatorname{deg} \mathcal{L}$ and rank $\operatorname{dim} V-1$.

1.1.13 Log structure

A prelog structure on a scheme X is given by a pair (X, M), where X is a scheme and M is a sheaf of monoids on X (on the Etale site) together with a
morphisms $\alpha: M \rightarrow \mathscr{O}_{X}$. It is a log structure if the map $\alpha: \alpha^{-1} \mathscr{O}_{X}^{*} \rightarrow \mathscr{O}_{X}^{*}$ is an isomorphism.

See [5].

1.1.14 Néron-Severi group

Let X be a nonsingular projective variety of dimension ≥ 2. Then we can define the subgroup $\mathrm{Cl}^{\circ} X$ of $\mathrm{Cl} X$, the subgroup consisting of divisor classes algebraically equivalent to zero. Then $\mathrm{Cl} X / \mathrm{Cl}^{\circ} X$ is a finitely-generated group. It is denoted by $\operatorname{NS}(X)$.

1.1.15 Normal crossings divisor

Let X be a smooth variety and $D \subset X$ a divisor. We say that D is a simple normal crossing divisor if every irreducible component of D is smooth and all intersections are transverse. That is, for every $p \in X$ we can choose local coordinates x_{1}, \cdots, x_{n} and natural numbers m_{1}, \cdots, m_{n} such that $D=\left(\prod_{i} x_{i}^{m_{i}}=0\right)$ in a neighbourhood of p.

Then we say that a divisor is normal crossing (without the "simple") if the neighbourhood above can is allowed to be chosen locally analytically or as a formal neighbourhood of p.

Example: the nodal curve $y^{2}=x^{3}+x^{2}$ is a a normal crossing divisor in \mathbb{C}^{2}, but not a simple normal crossing divisor.

This definition is taken from [6].

1.1.16 Normal variety

A variety X is normal if all its local rings are normal rings.

1.1.17 Picard number

The Picard number of a nonsingular projective variety is the rank of NéronSeveri group.

1.1.18 Proper morphism

A morphism $f: X \rightarrow Y$ is proper if it separated, of finite type, and universally closed.

1.1.19 Resolution of singularities

A morphism $f: X \rightarrow Y$ is a resolution of singularities of Y if X is non-singular and f is birational and proper.

1.1.20 Separated

Let $f: X \rightarrow Y$ be a morphism of schemes. Let $\Delta: X \rightarrow X \times_{Y} X$ be the diagonal morphism. We say that f is separated if Δ is a closed immersion. We say that X is separated if the unique morphism $f: X \rightarrow \operatorname{Spec} \mathbb{Z}$ is separated.

This is equivalent to the following: for all open affines $U, V \subset X$, the intersection $U \cap V$ is affine and $\mathscr{O}_{X}(U)$ and $\mathscr{O}_{X}(V)$ generate $\mathscr{O}_{X}(U \cap V)$. For example: let $X=\mathbb{P}^{1}$ and let $U_{1}=\{[x: 1]\}$ and $U_{2}=\{[1: y]\}$. Then $\mathscr{O}_{X}\left(U_{1}\right)=\operatorname{Spec} k[x]$ and $\mathscr{O}_{X}\left(U_{2}\right)=\operatorname{Spec} k[y]$. The glueing map is given on the ring level as $x \mapsto \frac{1}{y}$. Then $\mathscr{O}_{X}\left(U_{1} \cap U_{2}\right)=k\left[y, \frac{1}{y}\right]$.

1.1.21 Unirational variety

A variety X is unirational if there exists a generically finite dominant map $\mathbb{P}^{n} \rightarrow X$.

1.2 Moduli theory and stacks

1.2.1 Étale site

Let S be a scheme. Then the small étale site over S is the site, denoted by Ét (S) that consists of all étale morphisms $U \rightarrow S$ (morphisms being commutative triangles). Let $\operatorname{Cov}(U \rightarrow S)$ consist of all collections $\left\{U_{i} \rightarrow\right.$ $U\}_{i \in I}$ such that

$$
\coprod_{i \in I} U_{i} \rightarrow U
$$

is surjective.

1.2.2 Grothendieck topology

Let \mathcal{C} be a category. A Grothendieck topology on \mathcal{C} consists of a set $\operatorname{Cov}(X)$ of sets of morphisms $\left\{X_{i} \rightarrow X\right\}_{i \in I}$ for each X in $\operatorname{Ob}(\mathcal{C})$, satisfying the following axioms:

1. If $V \stackrel{\approx}{\rightarrow} X$ is an isomorphism, then $\{V \rightarrow X\} \in \operatorname{Cov}(X)$.
2. If $\left\{X_{i} \rightarrow X\right\}_{i \in I} \in \operatorname{Cov}(X)$ and $Y \rightarrow X$ is a morphism in \mathcal{C}, then the fiber products $X_{i} \times_{X} Y$ exists and $\left\{X_{i} \times_{X} Y \rightarrow Y\right\}_{i \in I} \in \operatorname{Cov}(Y)$.
3. If $\left\{X_{i} \in X\right\}_{i \in I} \in \operatorname{Cov}(X)$, and for each $i \in I,\left\{V_{i j} \rightarrow X_{i}\right\}_{j \in J} \in$ $\operatorname{Cov}\left(X_{i}\right)$, then

$$
\left\{V_{i j} \rightarrow X_{i} \rightarrow X\right\}_{i \in I, j \in J} \in \operatorname{Cov}(X) .
$$

The easiest example is this: Let \mathcal{C} be the category of open sets on a topological space X, the morphisms being only the inclusions. Then for each $U \in \operatorname{Ob}(\mathcal{C})$, define $\operatorname{Cov}(U)$ to be the set of all coverings $\left\{U_{i} \rightarrow U\right\}_{i \in I}$ such that $U=\bigcup_{i \in I} U_{i}$. Then it is easily checked that this defines a Grothendieck topology.

1.2.3 Site

A site is a category equipped with a Grothendieck topology.

1.3 Results and theorems

1.3.1 Adjunction formula

Let X be a smooth algebraic variety Y a smooth subvariety. Let $i: Y \hookrightarrow X$ be the inclusion map, and let \mathcal{I} be the corresponding ideal sheaf. Then $\omega_{Y}=i^{*} \omega_{X} \otimes_{\mathscr{O}_{X}} \operatorname{det}\left(\mathcal{I} / \mathcal{I}^{2}\right)^{\vee}$, where ω_{Y} is the canonical sheaf of Y.

In terms of canonical classes, the formula says that $K_{D}=\left.\left(K_{X}+D\right)\right|_{D}$.
Here's an example: Let X be a smooth quartic surface in \mathbb{P}^{3}. Then $H^{1}\left(X, \mathscr{O}_{X}\right)=0$. The divisor class group of \mathbb{P}^{3} is generated by the class of a hyperplane, and $\mathcal{K}_{\mathbb{P}^{3}}=-4 H$. The class of X is then $4 H$ since X is of degree 4. X corresponds to a smooth divisor D, so by the adjunction formula, we have that

$$
K_{D}=\left.\left(K_{\mathbb{P}^{3}}+D\right)\right|_{D}=-4 H+\left.4 H\right|_{D}=0 .
$$

Thus X is an example of a K3 surface.

1.3.2 Bertini's Theorem

Let X be a nonsingular closed subvariety of \mathbb{P}_{k}^{n}, where $k=\bar{k}$. Then the set of of hyperplanes $H \subseteq \mathbb{P}_{k}^{n}$ such that $H \cap X$ is regular at every point) and such that $H \nsubseteq X$ is a dense open subset of the complete linear system $|H|$. See [4, Thm II.8.18].

1.3.3 Chow's lemma

Chow's lemma says that if X is a scheme that is proper over k, then it is "fairly close" to being projective. Specifically, we have that there exists a projective k-scheme X^{\prime} and morphism $f: X^{\prime} \rightarrow X$ that is birational.

So every scheme proper over k is birational to a projective scheme. For a proof, see for example the Wikipedia page.

1.3.4 Euler sequence

If A is a ring and \mathbb{P}_{A}^{n} is projective n-space over A, then there is an exact sequence of sheaves on X :

$$
0 \rightarrow \Omega_{\mathbb{P}_{A}^{n} / A} \rightarrow \mathscr{O}_{\mathbb{P}_{A}^{n}}(-1)^{n+1} \rightarrow \mathscr{O}_{\mathbb{P}_{A}^{n}} \rightarrow 0
$$

See [4, Thm II.8.13].

1.3.5 Genus-degree formula

If C is a smooth plane curve, then its genus can be computed as

$$
g_{C}=\frac{(d-1)(d-2)}{2} .
$$

This follows from the adjunction formula. In particular, there are no curves of genus 2 in the plane.

1.3.6 Hirzebruch-Riemann-Roch formula

Let X be a nonsingular variety and let \mathscr{T}_{X} be its tangent bundle. Let \mathscr{E} be a locally free sheaf on X. Then

$$
\chi(\mathscr{E})=\operatorname{deg}(\operatorname{ch}(\mathscr{E}) \cdot \operatorname{td}(\mathscr{T}))_{n},
$$

where χ is the Euler characteristic, ch denotes the Chern class, and td denotes the Todd class. See [4, Appendix A].

1.3.7 Hurwitz' formula

Let X, Y be smooth curves in the sense of Hartshorne. That is, they are integral 1-dimensional schemes, proper over a field k (with $\bar{k}=k$), all of whose local rings are regular.

Then Hurwitz' formula says that if $f: X \rightarrow Y$ is a separable morphism and $n=\operatorname{deg} f$, then

$$
2\left(g_{X}-1\right)=2 n\left(g_{Y}-1\right)+\operatorname{deg} R,
$$

where R is the ramification divisor of f, and g_{X}, g_{Y} are the genera of X and Y, respectively. See Example 7.1.1.

1.3.8 Kodaira vanishing

If k is a field of characteristic zero, X is a smooth and projective k-scheme of dimension d, and \mathcal{L} is an ample invertible sheaf on X, then $H^{q}\left(X, \mathcal{L} \otimes_{\mathscr{O}_{X}} \Omega_{X / k}^{p}\right)=0$ for $p+q>d$. In addition, $H^{q}\left(X, \mathcal{L}^{-1} \otimes_{\mathscr{O}_{X}} \Omega_{X / k}^{p}\right)=0$ for $p+q<d$.

1.3.9 Lefschetz hyperplane theorem

Let X be an n-dimensional complex projective algebraic variety in $\mathbb{P}_{\mathbb{C}}^{N}$ and let Y be a hyperplane section of X such that $U=X \backslash Y$ is smooth. Then the natural map $H^{k}(X, \mathbb{Z}) \rightarrow H^{k}(Y, \mathbb{Z})$ in singular cohomology is an isomorphism for $k<n-1$ and injective for $k=n-1$.

1.3.10 Riemann-Roch for curves

The Riemann-Roch theorem relates the number of sections of a line bundle with the genus of a smooth proper curve C. Let \mathcal{L} be a line bundle ω_{C} the canonical sheaf on C. Then

$$
h^{0}(C, \mathcal{L})-h^{0}\left(C, \mathcal{L}^{-1} \otimes_{\mathscr{O}_{C}} \omega_{C}\right)=\operatorname{deg}(\mathcal{L})+1-g
$$

This is [4, Theorem IV.1.3].

1.3.11 Semi-continuity theorem

Let $f: X \rightarrow Y$ be a projective morphism of noetherian schemes, and let \mathscr{F} be a coherent sheaf on X, flat over Y. Then for each $i \geq 0$, the function $h^{i}(y, \mathscr{F})=\operatorname{dim}_{k(y)} H^{i}\left(X_{y}, \mathscr{F}_{y}\right)$ is an upper semicontinuous function on Y. See [4, Chapter III, Theorem 12.8].

1.3.12 Serre duality

Let X be a projective Cohen-Macaulay scheme of equidimension n. Then for any locally free sheaf \mathcal{F} on X there are natural isomorphisms

$$
H^{i}(X, \mathcal{F}) \simeq H^{n-i}\left(X, \mathcal{F}^{\vee} \otimes \omega_{X}^{\circ}\right)
$$

Here ω_{X}° is a dualizing sheaf for X. In the case that X is nonsingular, we have that $\omega_{X}^{\circ} \simeq \omega_{X}$, the canonical sheaf on X (see [4, Chapter III, Corollary 7.12]).

1.3.13 Serre vanishing

One form of Serre vanishing states that if X is a proper scheme over a noetherian ring A, and \mathcal{L} is an ample sheaf, then for any coherent sheaf \mathscr{F} on X, there exists an integer n_{0} such that for each $i>0$ and $n \geq n_{0}$ the group $H^{i}\left(X, \mathscr{F} \otimes_{O_{X}} \mathcal{L}^{n}\right)=0$ vanishes. See [4, Proposition III.5.3].

1.3.14 Weil conjectures

The Weil conjectures is a theorem relating the properties of a variety over finite fields with its properties over fields over characteristic zero.

Specifically, let

$$
\zeta(X, s)=\exp \left(\sum_{m=1}^{\infty} \frac{N_{m}}{m} q^{-s m}\right)
$$

be the zeta function of X (with respect to q). N_{m} is the number of points of X over $\mathbb{F}_{q^{n}}$. Then the Weil conjectures are the following four statements:

1. The zeta function $\zeta(X, s)$ is a rational function of $T=q^{-s}$:

$$
\zeta(X, T)=\prod_{i=1}^{2 n} P_{i}(T)^{(-1)^{i+1}}
$$

where the P_{i} 's are integral polynomials. Furthermore, $P_{0}(T)=1-T$ and $P_{2 n}(T)=1-q^{n} T$. For $1 \leq i \leq 2 n-1, P_{i}(T)$ factors as $P_{j}(T)=$ $\Pi\left(1-\alpha_{i j} T\right)$ over \mathbb{C}.
2. There is a functional equation. Let E be the topological Euler characteristic of X. Then

$$
\zeta\left(X, q^{-n} T^{-1}\right)= \pm q^{\frac{n E}{2}} T^{E} \zeta(X, T) .
$$

3. A "Riemann hypothesis": $\left|\alpha_{i j}\right|=q^{i / 2}$ for all $1 \leq i \leq 2 n-1$ and all j. This implies that the zeroes of $P_{k}(T)$ all lie on the critical line $\Re(z)=k / 2$.
4. If X is a good reduction modulo p, then the degree of P_{i} is equal to the i'th Betti number of X, seen as a complex variety.

1.4 Sheaves and bundles

1.4.1 Ample line bundle

A line bundle \mathcal{L} is ample if for any coherent sheaf \mathscr{F} on X, there is an integer n (depending on \mathscr{F}) such that $\mathscr{F} \otimes_{\mathscr{O}_{X}} \mathcal{L}^{\otimes n}$ is generated by global sections. Equivalently, a line bundle \mathcal{L} is ample if some tensor power of it is very ample.

1.4.2 Invertible sheaf

A locally free sheaf of rank 1 is called invertible. If X is normal, then, invertible sheaves are in $1-1$ correspondence with line bundles.

1.4.3 Anticanonical sheaf

The anticanonical sheaf ω_{X}^{-1} is the inverse of the canonical sheaf ω_{X}, that is $\omega_{X}^{-1}=\mathscr{H}_{o_{0}} \mathscr{O}_{X}\left(\omega_{X}, \mathscr{O}_{X}\right)$.

1.4.4 Canonical class

The canonical class K_{X} is the class of the canonical sheaf ω_{X} in the divisor class group.

1.4.5 Canonical sheaf

If X is a smooth algebraic variety of dimension n, then the canonical sheaf is $\omega:=\wedge^{n} \Omega_{X / k}^{1}$ the n^{\prime} th exterior power of the cotangent bundle of X.

1.4.6 Nef divisor

Let X be a normal variety. Then a Cartier divisor D on X is nef (numerically effective) if $D \cdot C \geq 0$ for every irreducible complete curve $C \subseteq X$. Here $D \cdot C$ is the intersection product on X defined by $\operatorname{deg}\left(\phi^{*} \mathscr{O}_{X}(D)\right)$. Here $\phi: C^{\prime} \rightarrow C$ is the normalization of C.

1.4.7 Sheaf of holomorphic p-forms

If X is a complex manifold, then the sheaf of of holomorphic p-forms Ω_{X}^{p} is the p-th wedge power of the cotangent sheaf $\wedge^{p} \Omega_{X}^{1}$.

1.4.8 Normal sheaf

Let $Y \hookrightarrow X$ be a closed immersion of schemes, and let $\mathcal{I} \subseteq \mathscr{O}_{X}$ be the ideal sheaf of Y in X. Then $\mathcal{I} / \mathcal{I}^{2}$ is a sheaf on Y, and we define the sheaf $\mathcal{N}_{Y / X}$ by $\mathscr{H}^{\operatorname{om}} \mathscr{O}_{Y}\left(\mathcal{I} / \mathcal{I}^{2}, \mathscr{O}_{Y}\right)$.

1.4.9 Rank of a coherent sheaf

Given a coherent sheaf \mathscr{F} on an irreducible variety X, form the sheaf $\mathscr{F} \otimes_{O_{X}} \mathscr{K}_{X}$. Its global sections is a finite dimensional vector space, and we say that \mathscr{F} has rank r if $\operatorname{dim}_{k} \Gamma\left(X, \mathscr{F} \otimes_{O_{X}} \mathscr{K}_{X}\right)=r$.

1.4.10 Reflexive sheaf

A sheaf \mathscr{F} is reflexive if the natural map $\mathscr{F} \rightarrow \mathscr{F}^{\mathrm{VV}}$ is an isomorpism. Here \mathscr{F}^{\vee} denotes the sheaf $\mathscr{H} \operatorname{om}_{X}\left(\mathscr{F}, \mathscr{O}_{X}\right)$.

1.4.11 Very ample line bundle

A line bundle \mathcal{L} is very ample if there is an embedding $i: X \hookrightarrow \mathbb{P}_{S}^{n}$ such that the pullback of $\mathscr{O}_{\mathbb{P}_{S}^{n}}(1)$ is isomorphic to \mathcal{L}. In other words, there should be an isomorphism $i^{*} \mathscr{O}_{\mathbb{P}_{S}^{n}}(1) \simeq \mathcal{L}$.

1.5 Singularities

1.5.1 Canonical singularities

A variety X has canonical singularities if it satisfies the following two conditions:

1. For some integer $r \geq 1$, the Weil divisor $r K_{X}$ is Cartier (equivalently, it is \mathbb{Q}-Cartier).
2. If $f: Y \rightarrow X$ is a resolution of X and $\left\{E_{i}\right\}$ the exceptional divisors, then

$$
r K_{Y}=f^{*}\left(r K_{X}\right)+\sum a_{i} E_{i}
$$

with $a_{i} \geq 0$.
The integer r is called the index, and the r_{i} are called the discrepancies at E_{i}.

1.5.2 Terminal singularities

A variety X have terminal singularities if the a_{i} in the definition of canonical singularities are all greater than zero.

1.5.3 Ordinary double point

An ordinary double point is a singularity that is analytically isomorphic to $x^{2}=y z$.

1.6 Toric geometry

1.6.1 Chow group of a toric variety

The Chow group $A_{n-1}(X)$ of a toric variety can be computed directly from its fan. Let $\Sigma(1)$ be the set of rays in Σ, the fan of X. Then we have an exact sequence

$$
0 \rightarrow M \rightarrow \mathbb{Z}^{\Sigma(1)} \rightarrow A_{n-1}(X) \rightarrow 0
$$

The first map is given by sending $m \in M$ to $\left(\left\langle m, v_{p}\right\rangle\right)_{\rho \in \Sigma(1)}$, where v_{p} is the unique generator of the semigroup $\rho \cap N$. The second map is given by sending $\left(a_{\rho}\right)_{\rho \in \Sigma(1)}$ to the divisor class of $\sum_{\rho} a_{\rho} D_{\rho}$.

1.6.2 Generalized Euler sequence

The generalized Euler sequence is a generalization of the Euler sequence for toric varieties. If X is a smooth toric variety, then its cotangent bundle Ω_{X}^{1} fits into an exact sequence

$$
0 \rightarrow \Omega_{X}^{1} \rightarrow \oplus_{\rho} \mathscr{O}_{X}\left(-D_{\rho}\right) \rightarrow \operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathscr{O}_{X} \rightarrow 0
$$

Here D_{ρ} is the divisor corresponding to the ray $\rho \in \Sigma(1)$. See [2, Chapter 8].

1.6.3 Polarized toric variety

A toric variety equipped with an ample T-invariant divisor.

1.6.4 Toric variety associated to a polytope

There are several ways to do this. Here is one: Let $\Delta \subset M_{\mathbb{R}}$ be a convex polytope. Embed Δ in $M_{R} \times \mathbb{R}$ by $\Delta \times\{1\}$ and let C_{Δ} be the cone over $\Delta \times\{1\}$, and let $\mathbb{C}\left[C_{\Delta} \cap(M \times \mathbb{Z})\right]$ be the corresponding semigroup ring. This is a semigroup ring graded by the \mathbb{Z}-factor. Then we define $\mathbb{P}_{\Delta}=$ $\operatorname{Proj} \mathbb{C}\left[C_{\Delta} \cap(M \times \mathbb{Z})\right]$ to be the toric variety associated to a polytope.

1.7 Types of varieties

1.7.1 Abelian variety

A variety X is an abelian variety if it is a connected and complete algebraic group over a field k. Examples include elliptic curves and for special lattices $\Lambda \subset \mathbb{C}^{2 g}$, the quotient $\mathbb{C}^{2 g} / \Lambda$ is an abelian variety.

1.7.2 Calabi-Yau variety

In algebraic geometry, a Calabi-Yau variety is a smooth, proper variety X over a field k such that the canonical sheaf is trivial, that is, $\omega_{X} \simeq \mathscr{O}_{X}$, and such that $H^{j}\left(X, \mathscr{O}_{X}\right)=0$ for $1 \leq j \leq n-1$.

1.7.3 Conifold

In the physics literature, a conifold is a complex analytic space whose only singularities are ordinary double points.

1.7.4 del Pezzo surface

A del Pezzo surface is a 2-dimensional Fano variety. In other words, they are complete non-singular surfaces with ample anticanonical bundle. The degree of the del Pezzo surface X is by definition the self intersection number $K . K$ of its canonical class K.

1.7.5 Elliptic curve

An elliptic curve is a smooth, projective curve of genus 1. They can all be obtained from an equation of the form $y^{2}=x^{3}+a x+b$ such that $\Delta=$ $-2^{4}\left(4 a^{3}+27 b^{2}\right) \neq 0$.

1.7.6 Elliptic surface

An elliptic surface is a smooth surface X with a morphism $\pi: X \rightarrow B$ onto a non-singular curve B whose generic fiber is a non-singular elliptic curve.

1.7.7 Fano variety

A variety X is Fano if the anticanonical sheaf ω_{X}^{-1} is ample.

1.7.8 Jacobian variety

Let X be a curve of genus g over k. The Jacobian variety of X is a scheme J of finite type over k, together with an element $\mathcal{L} \in \operatorname{Pic}^{\circ}(X / J)$, with the following universal property: for any scheme T of finite type over k and for any $\mathcal{M} \in \operatorname{Pic}^{\circ}(X / T)$, there is a unique morphism $f: T \rightarrow J$ such that $f^{*} \mathcal{L} \simeq \mathcal{M}$ in $\operatorname{Pic}^{\circ}(X / T)$. This just says that J represents the functor $T \mapsto \operatorname{Pic}^{\circ}(X / T)$.

If J exists, its closed points are in $1-1$ correspondence with elements of $\operatorname{Pic}^{\circ}(X)$.

It can be checked that J is actually a group scheme. For details, see [4, Ch. IV.4].

1.7.9 K3 surface

A K3 surface is a complex algebraic surface X such that the canonical sheaf is trivial, $\omega_{X} \simeq \mathscr{O}_{X}$, and such that $H^{1}\left(X, \mathscr{O}_{X}\right)=0$. These conditions completely determine the Hodge numbers of X.

1.7.10 Stanley-Reisner scheme

A Stanley-Reisner scheme is a projective variety associated to a simplicial complex as follows. Let \mathcal{K} be a simplicial complex. Then we define an ideal $I_{\mathcal{K}} \subseteq k\left[x_{v} \mid v \in V(\mathcal{K})\right]=k[\mathbf{x}]$ (here $V(\mathcal{K})$ denotes the vertex set of \mathcal{K}) by

$$
I_{\mathcal{K}}=\left\langle x_{v_{i_{1}}} x_{v_{i_{2}}} \cdots x_{v_{i_{k}}} \mid v_{i_{1}} v_{i_{2}} \cdots v_{i_{k}} \notin \mathcal{K}\right\rangle
$$

We get a projective scheme $\mathbb{P}(\mathcal{K})$ defined by $\operatorname{Proj}\left(k[\mathbf{x}] / I_{\mathcal{K}}\right)$, together with an embedding into $\mathbb{P}^{\# V(\mathcal{K})-1}$. It can be shown that $H^{p}\left(\mathbb{P}(\mathcal{K}), \mathscr{O}_{\mathbb{P}}(\mathcal{K})\right) \simeq$ $H^{p}(\mathcal{K} ; k)$, where the right-hand-side denotes the cohomology group of the simplicial complex.

1.7.11 Toric variety

A toric variety X is an integral scheme containing the torus $\left(k^{*}\right)^{n}$ as a dense open subset, such that the action of the torus on itself extends to an action $\left(k^{*}\right)^{n} \times X \rightarrow X$.

2 Category theory

2.1 Basisc concepts

2.1.1 Adjoints pair

Let $\mathcal{C}, \mathcal{C}^{\prime}$ be categories. Let $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ and $F^{\prime}: \mathcal{C}^{\prime} \rightarrow \mathcal{C}$ be functors. We call $\left(F, F^{\prime}\right)$ an adjoint pair, or that F is left adjoint to F^{\prime} (or \mathbb{F}^{\prime} right adjoint) if for each $A \in \mathcal{C}$ and $A^{\prime} \in \mathcal{C}^{\prime}$, we have a natural bijection

$$
\operatorname{Hom}_{\mathcal{C}^{\prime}}\left(F(A), A^{\prime}\right) \simeq \operatorname{Hom}_{\mathcal{C}}\left(A, F^{\prime}\left(A^{\prime}\right)\right)
$$

The naturality condition assures us that adjoints are unique up to isomorphism.

2.2 Limits

2.2.1 Direct limit

2.2.2 Filtered category

A category J is filtered when it satisfies the following three conditions: 1) it is non-empty. 2) For every two objects $j, j^{\prime} \in \mathrm{ob}(J)$, there exists an object $k \in \mathrm{ob}(J)$ and two arrows $f: j \rightarrow k$ and $f: j^{\prime} \rightarrow k$. 3) For every two parallel arrows $u, v: i \rightarrow j$ there exists an object $w \in \mathrm{ob}(J)$ and an arrow $w: j \rightarrow k$ such that $w u=w v$.

3 Commutative algebra

3.1 Linear algebra

3.1.1 Pfaffians

Let M be a skew-symmetric matrix. Then the determinant is always square, and its square root is called the Pfaffian of the matrix. More formally, if
$A=\left(a_{i j}\right)$ is a $2 n \times 2 n$ matrix, then the Pfaffian is defined as

$$
p f(A)=\frac{1}{2^{n} n!} \sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{\sigma(2 i-1), \sigma(2 i)} .
$$

If M is a matrix over a polynomial ring, by removing rows and columns with the same indices, one obtains a new skew-symmetric matrix. This way, one can form the ideal generated by the $m \times m$ Pfaffians for $m<2 n$.

3.2 Modules

3.2.1 Depth

Let R be a noetherian ring, and M a finitely-generated R-module and I an ideal of R such that $I M \neq M$. Then the I-depth of M is (see Ext):

$$
\inf \left\{i \mid \operatorname{Ext}_{R}^{i}(R / I, M) \neq 0\right\} .
$$

This is also the length of a maximal M-sequence in I.

3.2.2 M-sequence

Let M be an A-module and $x \in A$. We say that x is M-regular if multiplication by x is injective on M. We say that a sequence of elements a_{1}, \ldots, a_{r} is an M -sequence if

- a_{1} is M-regular, a_{2} is $M / a_{1} M$-regular, a_{3} is $M /\left(a_{1}, a_{2}\right) M$-regular, and so on.
- $M / \sum_{i} a_{i} M \neq 0$.

The length of a maximal M-sequence is the depth of M.

3.2.3 Rank

If R has the invariant basis property (IBN), then we define the rank of a free module to be the cardinality of any basis.

3.2.4 Stably free module

A module M is stably free (of rank $n-m$) if $P \oplus R^{n} \simeq R^{n}$ for some m and n.

3.2.5 Kähler differentials

Let $A \rightarrow B$ be a ring homomorphism. The module of Kähler differentials $\Omega_{B / A}$ is the module together with a map $d: B \rightarrow \Omega_{B / A}$ satisfying the following universal property: if $D: B \rightarrow M$ is any A-linear derivation (an element of $\operatorname{Der}_{A}(B, M)$), then there is a unique module homomorphism $\widetilde{D}: \Omega_{B / A} \rightarrow M$ such that

is commutative. Thus we have a natural isomorphism $\operatorname{Der}_{A}(B, M)=\operatorname{Hom}_{B}\left(\Omega_{B / A}, M\right)$. In the language of category theory, this means that $\operatorname{Der}_{A}(B,-)$ is corepresented by $\Omega_{B / A}$.

A concrete construction of $\Omega_{B / A}$ is given as follows. Let M be the free B module generated by all symbols $d f$, where $f \in B$. Let N be the submodule generated by $d a$ if $a \in A, d(f+g)-d f-d g$ and the Leibniz rule $d(f g)-$ $f d g-g d f$. Then $M / N \simeq \Omega_{B / A}$ as B-modules.

3.3 Results and theorems

3.3.1 The conormal sequence

The conormal sequence is a sequence relating Kähler differentials in different rings. Specifically, if $A \rightarrow B \rightarrow 0$ is a surjection of rings with kernel I, then we have an exact sequence of B-modules:

$$
I / I^{2} \xrightarrow{d} B \otimes_{A} \Omega_{B / A} \xrightarrow{D \pi} \Omega_{T / R} \rightarrow 0
$$

The map d sends $f \mapsto 1 \otimes d f$, and $D \pi$ sends $c \otimes d b \mapsto c d b$. For proof, see [3, Chapter 16].

3.3.2 Determinant of an exact sequence

Suppose we have an exact sequence of free R-modules:

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0
$$

of ranks l, m and n, respectively. Then there is a natural isomorphism $\wedge^{m} M \simeq \wedge L^{l} N \otimes_{R} \wedge^{n} N$. This is used in proving the adjunction formula.

3.3.3 The Unmixedness Theorem

Let R be a ring. If $I=\left\langle x_{1}, \cdots, x_{n}\right\rangle$ is an ideal generated by n elements such that codim $I=n$, then all minimal primes of I have codimension n. If in addition R is Cohen-Macaulay, then every associated prime of I is minimal over I. See the discussion after [3, Corollary 18.14] for more details.

3.4 Rings

3.4.1 Cohen-Macaulay ring

A local Cohen-Macaulay ring (CM-ring for short) is a commutative noetherian local ring with Krull dimension equal to its depth. A ring is CohenMacaulay if its localization at all prime ideals are Cohen-Macaulay.

3.4.2 Depth of a ring

The depth of a ring R is is its depth as a module over itself.

3.4.3 Gorenstein ring

A commutative ring R is Gorenstein if each localization at a prime ideal is a Gorenstein local ring. A Gorenstein local ring is a local ring with finite injective dimension as an R-module. This is equivalent to the following: $\operatorname{Ext}_{R}^{i}(k, R)=0$ for $i \neq n$ and $\operatorname{Ext}_{R}^{n}(k, R) \simeq k$ (here $k=R / \mathfrak{m}$ and n is the Krull dimension of R).

3.4.4 Invariant basis property

A ring R satisfies the invariant basis property (IBP) if $R^{n} \nsucceq R^{n+t} R-$ modules for any $t \neq 0$. Any commutative ring satisfies the IBP.

3.4.5 Normal ring

An integral domain R is normal if all its localizations at prime ideals $\mathfrak{p} \in \operatorname{Spec} R$ are integrally closed domains.

4 Convex geometry

4.1 Cones

4.1.1 Gorenstein cone

A strongly convex cone $C \subset M_{\mathbb{R}}$ is Gorenstein if there exists a point $n \in N$ in the dual lattice such that $\langle v, n\rangle=1$ for all generators of the semigroup $C \cap M$.

4.1.2 Reflexive Gorenstein cone

A cone C is reflexive if both C and its dual C^{\vee} are Gorenstein cones. See for example [1].

4.1.3 Simplicial cone

A cone C generated by $\left\{v_{1}, \cdots, v_{k}\right\} \subseteq N_{\mathbb{R}}$ is simplicial if the v_{i} are linearly independent.

4.2 Polytopes

4.2.1 Dual (polar) polytope

If Δ is a polyhedron, its dual Δ° is defined by

$$
\Delta^{\circ}=\left\{x \in N_{\mathbb{R}} \mid\langle x, y\rangle \geq-1 \forall y \in \Delta\right\} .
$$

4.2.2 Gorenstein polytope of index r

A lattice polytope $P \subset \mathbb{R}^{d+r-1}$ is called a Gorenstein polytope of index r if $r P$ contains a single interior lattice point p and $r P-p$ is a reflexive polytope.

4.2.3 Nef partition

Let $\Delta \subset M_{\mathbb{R}}$ be a d-dimensional reflexive polytope, and let $m=\operatorname{int}(\Delta) \cap M$. A Minkowski sum decomposition $\Delta=\Delta_{1}+\ldots+\Delta_{r}$ where $\Delta_{1}, \ldots, \Delta_{r}$ are lattice polytopes is called a nef partition of Δ of length r if there are lattice points $p_{i} \in \Delta_{i}$ for all i such that $p_{1}+\cdots+p_{r}=m$. The nef partition is called centered if $p_{i}=0$ for all i.

This is equivalent to the toric divisor $D_{j}=\mathscr{O}\left(\Delta_{i}\right)=\sum_{\rho \in \Delta_{i}} D_{\rho}$ being a Cartier divisor generated by its global sections. See [1, Chapter 4.3].

4.2.4 Reflexive polytope

A polytope Δ is reflexive if the following two conditions hold:

1. All facets Γ of Δ are supported by affine hyperplanes of the form $\left\{m \in M_{\mathbb{R}} \mid\left\langle m, v_{\Gamma}\right\rangle=-1\right\}$ for some $v_{\Gamma} \in N$.
2. The only interior point of Δ is 0 , that is: $\operatorname{Int}(\Delta) \cap M=\{0\}$.

It can be proved that a polytope Δ is reflexive if and only if the associated toric variety \mathbb{P}_{Δ} is Fano.

5 Homological algebra

5.1 Classes of modules

5.1.1 Projective modules

Projective modules are those satisfying a universal lifting property. A module P is projective if for every epimorphism $\alpha: M \rightarrow N$ and every map, $\beta: P \rightarrow N$, there exists a map $\gamma: P \rightarrow M$ such that $\beta=\alpha \circ \gamma$.

These are the modules P such that $\operatorname{Hom}(P,-)$ is exact.

5.2 Derived functors

5.2.1 Ext

Let R be a ring and M, N be R-modules. Then $\operatorname{Ext}_{R}^{i}(M, N)$ is the rightderived functors of the $\operatorname{Hom}(M,-)$-functor. In particular, $\operatorname{Ext}_{R}^{i}(M, N)$ can be computed as follows: choose a projective resolution C. of N over R. Then apply the left-exact functor $\operatorname{Hom}_{R}(M,-)$ to the resolution and take homology. Then $\operatorname{Ext}_{R}^{i}(M, N)=h^{i}(C$.$) .$

5.2.2 Local cohomology

Let R be a ring and $I \subset R$ an ideal. Let $\Gamma_{I}(-)$ be the following functor on R-modules:

$$
\Gamma_{I}(M)=\left\{f \in M \mid \exists n \in \mathbb{N}, \text { s.t. } I^{n} f=0\right\}
$$

Then $H_{I}^{i}(-)$ is by definition the i th right derived functor of Γ_{I}. In the case that R is noetherian, we have $H_{I}^{i}(M)=\xrightarrow{\lim } \operatorname{Ext}_{R}^{i}\left(R / I_{n}, M\right)$.

See [3] and [7] for more details.

5.2.3 Tor

Let R be a ring and M, N be R-modules. Then $\operatorname{Tor}_{R}^{i}(M, N)$ is the rightderived functors of the $-\otimes_{R} N$-functor. In particular $\operatorname{Tor}_{R}^{i}(M, N)$ can be computed by taking a projective resolution of M, tensoring with N, and then taking homology.

6 Differential and complex geometry

6.1 Definitions and concepts

6.1.1 Almost complex structure

An almost complex structure on a manifold M is a map $J: T(M) \rightarrow$ $T(M)$ whose square is -1 .

6.1.2 Connection

Let $E \rightarrow M$ be a vector bundle over M. A connection is a \mathbb{R}-linear map $\nabla: \Gamma(E) \rightarrow \Gamma\left(E \otimes T^{*} M\right)$ such that the Leibniz rule holds:

$$
\nabla(f \sigma)=f \nabla(\sigma)+\sigma \otimes \mathrm{d} f
$$

for all functions $f: M \rightarrow \mathbb{R}$ and sections $\sigma \in \Gamma(E)$.

6.1.3 Hermitian manifold

A Hermitian metric on a complex vector bundle E over a manifold M is a positive-definite Hermitian form on each fiber. Such a metric can be written as a smooth section $\Gamma(E \otimes \bar{E})^{*}$, such that $h_{p}(\eta, \bar{\zeta})=h_{p}\left(\bar{\zeta},{ }^{-} \eta\right)$ for all $p \in M$, and such that $h_{p}(\eta, \bar{\eta})>0$ for all $p \in M$. A Hermitian manifold is a complex manifold with a Hermitian metric on its holomorphic tangent space $T^{(1,0)}(M)$.

6.1.4 Kähler manifold

A Kahler manifold is a Hermitian manifold (that is, a complex manifold equipped with a Hermitian metric at every complex tangent space) such that its associated Hermitian form is closed.

6.1.5 Morse function

A Morse function $f: M \rightarrow \mathbb{R}$ on a manifold M is a smooth function whose Hessian matrix is no-where singular. The set of Morse functions forms a dense open set on $C^{\infty}(M)$ in the C^{2}-topology.

The Morse lemma states that a Morse function can be written as

$$
f(x)=f(b)-x_{1}^{2}-x_{2}^{2}-\ldots-x_{\alpha}^{2}+x_{\alpha+1}^{2}+\ldots+x_{n}^{2}
$$

such that $f(x)=0$, in a neighbourhood of a point $x \in M$. The number α is called the index of f at b.

Let $M^{a}=f^{-1}((-\infty, a])$. The first of the two fundamental theorems of Morse theory says the following: suppose f is a Morse function and $f^{-1}([a, b])$ is compact, and that there are no critical values of f in $[a, b]$, then M^{a} is diffeomorphic to M^{b} and M^{b} deformation retracts onto M^{a}.

The other theorem says the following: let f be a Morse function and let p be a critical point of f of index γ, and that $f(p)=q$. Suppose also that $f^{-1}([q-\epsilon, q+\epsilon])$ is compact and contains no other critical points. Then $M^{q+\epsilon}$ is homotopy equivalent to $M^{q-\epsilon}$ with a γ-cell attached.

Thus Morse functions are nice for studying the topology of manifolds.

6.1.6 Symplectic manifold

A $2 n$-dimensional manifold M is symplectic if it is compact and oriented and has a closed real two-form $\omega \in \bigwedge^{2} T^{*}(M)$ which is nondegenerate, in the sense that $\left.\wedge^{n} \omega\right|_{p} \neq 0$ for all $p \in M$.

6.2 Results and theorems

7 Worked examples

7.1 Algebraic geometry

7.1.1 Hurwitz formula and Kähler differentials

Let X be the conic in \mathbb{P}^{2} given with ideal sheaf $\left\langle x z-y^{2}\right\rangle$. Let Y be \mathbb{P}^{1}, and consider the map $f: X \rightarrow Y$ given by projection onto the $x z$-line. X is covered by two affine pieces, namely $X=U_{x} \cup U_{z}$, the spectra of the homogeneous localizations at x, z, respectively. Let $U_{x}=\operatorname{Spec} A$ for $A=k[z]$ and $U_{z}=\operatorname{Spec} B$ for $B=k[x]$. Then the map is locally given by $A \rightarrow k[y, z] /\left(z-y^{2}\right)$ where $z \mapsto \bar{z}$, and similarly for B. We have an
isomorphism $k[y, z] /\left(z-y^{2}\right) \simeq k[t]$, given by $y \mapsto t$ and $z \mapsto t^{2}$, so that locally the map is given by $k[z] \rightarrow k[t], z \mapsto t^{2}$.

This is a map of smooth projective curves, so we can apply Hurwitz' formula. Both X, Y are \mathbb{P}^{1}, so both have genus zero. Hence Hurwitz formula says that

$$
-2=-n \cdot 2+\operatorname{deg} R
$$

where R is the ramification divisor and n is the degree of the map. The degree of the map can be defined locally, and it is the degree of the field extension $k(Y) \hookrightarrow k(X)$. But (the image of) $k(Y)=k\left(t^{2}\right)$ and $k(X)=k(t)$, so that $[k(Y): k(X)]=2$. Hence by Hurwitz' formula, we should have $\operatorname{deg} R=2$. Since $R=\sum_{P \in X}$ length $\Omega_{X / Y_{P}} \cdot P$, we should look at the sheaf of relative differentials $\Omega_{Y / X}$.

First we look in the chart U_{z}. We compute that $\Omega_{k[t] / k\left[t^{2}\right]}=k[t] /(t)$. This follows from the relation $d\left(t^{2}\right)=2 d t$, implying that $d t=0$ in $\Omega_{k[t] / k\left[t^{2}\right]}$. This module is zero localized at all primes but (t), where it is k. Thus for $P=(0: 0: 1)$, we have length $\Omega_{X / Y_{P}}=1$.

The situation is symmetric with $z \leftrightarrow x$, so that we have $R=(0: 0:$ $1)+(1: 0: 0)$, confirming that $\operatorname{deg} R=2$.

In fact, the curve C is isomorphic to \mathbb{P}^{1} via the map $\mathbb{P}^{1} \rightarrow C$ given by $(s: t) \mapsto\left(s^{2}: s t: t^{2}\right)$. Identifying C with \mathbb{P}^{1}, we thus see that $C \rightarrow \mathbb{P}^{1}$ correspond to the map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ given by $(s: t) \mapsto\left(s^{2}: t^{2}\right)$.

7.2 The quintic threefold

Let Y be a the zeroes of a general hypersurface of degree 5 in \mathbb{P}^{4}, or in other words, a section of $\omega_{\mathbb{P}^{4}}^{\vee}$. We want to compute the cohomology of Y and its Hodge numbers. Let $\mathbb{P}=\mathbb{P}^{4}$.

We have the ideal sheaf sequence

$$
0 \rightarrow \mathscr{I} \rightarrow \mathscr{O}_{\mathbb{P}} \rightarrow i^{*} \mathscr{O}_{Y} \rightarrow 0
$$

where $i: Y \rightarrow \mathbb{P}^{4}$ is the inclusion. Note that $\mathscr{I}=\mathscr{O}_{\mathbb{P}}(-5)$. Thus we have from the long exact sequence of cohomology that

$$
\cdots \rightarrow H^{i}(\mathbb{P}, \mathscr{I}) \rightarrow H^{i}\left(\mathbb{P}, \mathscr{O}_{\mathbb{P}}\right) \rightarrow H^{i}\left(Y, \mathscr{O}_{Y}\right) \rightarrow H^{i+1}(\mathbb{P}, \mathscr{I}) \rightarrow \cdots
$$

Note that $H^{i+1}(\mathbb{P}, \mathscr{I})=0$ for $i \neq 3$ and 1 for $i=3$. Also $H^{i}\left(\mathbb{P}, \mathscr{O}_{\mathbb{P}}\right)=0$ unless $i=0$ in which case it is 1 . Thus we get that $H^{i}\left(Y, \mathscr{O}_{Y}\right)$ is k for $i=0$, for $i=1,2$ it is 0 , and for $i=3$ it is k. For higher i it is zero by Grothendieck vanishing.

The adjunction formula relates the canonical bundles as follows: if $\omega_{\mathbb{P}}$ is the canonical bundle on \mathbb{P}, then $\omega_{Y}=i^{*} \omega_{\mathbb{P}} \otimes_{\mathscr{O}_{\mathbb{P}}} \operatorname{det}\left(\mathscr{I} / \mathscr{I}^{2}\right)^{\vee}$. The ideal sheaf is already a line bundle, so taking the determinant does not change anything. Now

$$
\begin{aligned}
\left(\mathscr{I} / \mathscr{I}^{2}\right)^{\vee} & =\mathscr{H o m}_{Y}\left(\mathscr{I} / \mathscr{I}^{2}, \mathscr{O}_{Y}\right) \\
& =\mathscr{H o m}_{\mathbb{P}}\left(\mathscr{I}, \mathscr{O}_{Y}\right)=\mathscr{H}_{\operatorname{com}}\left(\mathscr{O}_{\mathbb{P}}(-5), \mathscr{O}_{Y}\right)=\mathscr{O}_{Y}(5) .
\end{aligned}
$$

It follows that $\omega_{Y}=\mathscr{O}_{Y}(-5) \otimes \mathscr{O}_{Y}(5)=\mathscr{O}_{Y}$. Thus the canonical bundle is trivial and we conclude that Y is Calabi-Yau.

It remains to compute the Hodge numbers. We start with $h^{11}=\operatorname{dim}_{k} H^{1}\left(Y, \Omega_{Y}\right)$. We have the conormal sequence of sheaves on Y :

$$
0 \rightarrow \mathscr{I} / \mathscr{I}^{2} \rightarrow \Omega_{\mathbb{P}} \otimes \mathscr{O}_{Y} \rightarrow \Omega_{Y} \rightarrow 0
$$

which gives us the long exact sequence:

$$
\cdots \rightarrow H^{i}\left(\mathscr{I} / \mathscr{I}^{2}\right) \rightarrow H^{i}\left(\Omega_{\mathbb{P}} \otimes \mathscr{O}_{Y}\right) \rightarrow H^{i}\left(\Omega_{Y}\right) \rightarrow H^{i+1}\left(\mathscr{I} / \mathscr{I}^{2}\right) \rightarrow \cdots
$$

Since $\mathscr{I} / \mathscr{I}^{2}=\mathscr{O}_{Y}(-5)$, we can compute its cohomology by twisting the ideal sequence:

$$
\begin{equation*}
0 \rightarrow \mathscr{O}_{\mathbb{P}}(-10) \rightarrow \mathscr{O}_{\mathbb{P}}(-5) \rightarrow \mathscr{I} / \mathscr{I}^{2} \rightarrow 0 \tag{1}
\end{equation*}
$$

It follows from the cohomology of \mathbb{P}^{4} that $h^{i}\left(\mathscr{I} / \mathscr{I}^{2}\right)=0$ for $i=0,1,2$. But for $i=3$ we get the sequence

$$
0 \rightarrow H^{3}\left(Y, O O_{Y}(-5)\right) \rightarrow H^{4}\left(\mathbb{P}, \mathscr{O}_{\mathbb{P}}(-10)\right) \rightarrow H^{4}\left(\mathbb{P}, \mathscr{O}_{\mathbb{P}}(-5)\right) \rightarrow 0
$$

By adjunction it follows that $h^{3}\left(\mathscr{I} / \mathscr{I}^{2}\right)=126-1=125$.
It follows from these calculations and the conormal sequence that $H^{1}\left(\Omega_{Y}\right) \simeq$ $H^{1}\left(\Omega_{\mathbb{P}} \otimes \mathscr{O}_{Y}\right)$. We have the Euler sequence:

$$
0 \rightarrow \Omega_{\mathbb{P}} \rightarrow \mathscr{O}_{\mathbb{P}}(-1)^{\oplus 5} \rightarrow \mathscr{O}_{\mathbb{P}} \rightarrow 0
$$

Now $\mathscr{O}_{Y}=\mathscr{O}_{\mathbb{P}} / \mathscr{I}$ is a flat $\mathscr{O}_{\mathbb{P}}$-module since \mathscr{I} is principal and generated by a non-zero divisor. Thus we can tensor the Euler sequence with \mathscr{O}_{Y} and get

$$
0 \rightarrow \Omega_{\mathbb{P}} \otimes \mathscr{O}_{Y} \rightarrow \mathscr{O}_{Y}(-1)^{5} \rightarrow \mathscr{O}_{Y} \rightarrow 0
$$

from which it easily follows that $H^{1}\left(Y, \Omega_{\mathbb{P}} \otimes \mathscr{O}_{Y}\right) \simeq H^{0}\left(\mathscr{O}_{Y}\right)=k$. We conclude that $h^{11}=1$.

Now we compute $h^{12}=\operatorname{dim}_{k} H^{1}\left(Y, \Omega_{Y}^{2}\right)$. This is equal to $H^{2}\left(Y, \Omega_{Y}\right)$ by Serre duality. Again we use the conormal sequence. From the Euler sequence we get that $H^{2}\left(Y, \Omega_{\mathbb{P}} \otimes \mathscr{O}_{Y}\right)=0$. We also get that $h^{3}\left(Y, \Omega_{\mathbb{P}} \otimes \mathscr{O}_{Y}\right)=24$. By complex conjugation, we have that $h^{p q}=h^{q p}$, so that $H^{3}\left(\Omega_{Y}\right)=H^{1}\left(\Omega^{3}\right)=$ $H^{1}\left(\omega_{Y}\right)=H^{1}\left(\mathscr{O}_{Y}\right)=0$. We conclude that

$$
h^{12}=h^{3}\left(\mathscr{I} / \mathscr{I}^{2}\right)-h^{3}\left(\Omega_{\mathbb{P}} \otimes \mathscr{O}_{Y}\right)=125-24=101 .
$$

This example is extremely important in mirror symmetry.

7.3 A non-flat morphism

Let $A=k[x]$ and $B=k[x, y] /(x y)$. Let $f: A \rightarrow B$ be the inclusion $x \mapsto x$. This corresponds the projection of union of the x and y axis to the x-axis. I claim that B is not a flat A-module. For, start with the exact sequence

$$
0 \rightarrow\langle x\rangle \rightarrow A \rightarrow A /\langle x\rangle k \rightarrow 0 .
$$

Tensor this sequence with B :

$$
0 \rightarrow\langle x\rangle \otimes B \rightarrow A \otimes_{A} B=B \rightarrow k \otimes B \rightarrow 0 .
$$

Then take $x \otimes y \in\langle x\rangle \otimes B$. This element is mapped to $x y=0 \in B$. I claim that this is non-zero, hence the map is non-injective, proving nonflatness. Note that B has a basis as a k-vector space given by the powers $\left\{x^{i}, y^{j}\right\}$, where $i, j=0,1,2, \ldots$. Hence $\langle x\rangle \otimes B$ has a basis as a k-vector space by $x^{k} \otimes y^{l}$. Hence the expression of $x \otimes y$ as a pure tensor is unique, so that it cannot be zero.

References

[1] David A. Cox and Sheldon Katz. Mirror symmetry and algebraic geometry, volume 68 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.
[2] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.
[3] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
[4] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[5] Kazuya Kato. Logarithmic structures of Fontaine-Illusie. In Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), pages 191-224. Johns Hopkins Univ. Press, Baltimore, MD, 1989.
[6] János Kollár. Lectures on resolution of singularities, volume 166 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2007.
[7] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

