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Introduction

Let G(d, n) be the Grassmannian parametrizing d-dimensional linear sub-
spaces in an n-dimensional vector space V. It is a projective scheme em-
bedded in PN for N =

(
n
d

)
− 1 via its Plücker embedding. Let L be a

distributive lattice. Then one can form the Hibi variety ProjHL, which is a
binomial scheme defined by certain relations coming from the lattice L. It
is well-known [CHT06] that the Grassmannian G(d, n) degenerates to a Hibi
variety associated to a certain lattice Ld,n.

The ideal of the Hibi variety ProjHLd,n has a nice initial ideal such
that its initial complex is isomorphic to K := ∆eq ∗ ∆d, where ∆eq is a
simplicial sphere and ∆d is a d-simplex. This implies that the Hibi variety
degenerates to a Stanley-Reisner scheme P(K). When d = 2, ∆eq is the
dual associahedron, and it was shown in [CI11] that in this case P(K) is
unobstructed. The first example where P(∆eq ∗ ∆d) is obstructed is for
d = 3, n = 6, which will be the topic of this thesis.

We first study two special automorphisms of G(d, 2d) induced by au-
tomorphisms of a lattice Ld,2d associated to the Grassmannian G(d, 2d)
and describe these. They generate a subgroup G ⊂ Aut(G(d, 2d)) with
G = Z/2× Z/2. By definition G acts on the Hibi variety ProjHLd,2d , and it
is also easy to see that it acts on ∆eq. We then compute the cotangent mod-
ules T i (i = 1, 2) for the Stanley-Reisner scheme P(K). Using a package for
the computer algebra software Macaulay2 [GS, Ilt11], we compute a family
of deformations X → T having the Stanley-Reisner scheme P(K) as its spe-
cial fiber, the Hibi variety as an intermediate fiber, and the Grassmannian
G(3, 6) as a generic fiber. The group G acts on T 1

AK
, and on the base space

T . It turns out that the invariant subspace T G is smooth of dimension 6.
The last section is devoted to studying the fibers of the family X →

T G . In particular we find that there are only three isomorphism classes of
irreducible degenerations of G(3, 6). One of them is the Hibi ring, and the
other two are obtained by setting just one of the six deformation parameters

iii
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to zero. We are able to describe their singular loci.
In Chapter 1 we present preliminary concepts and results. They are

stated with the purpose of fixing notation and introducing the uninitiated
reader to the terminology.

In Chapter 2 we present the Grassmannian and its Plücker embedding.
We discuss its automorphism group, and completely describe the group G
when d = 2 and d = 3. We give examples for G(2, 4).

In Chapter 3 we present the necessary background from deformation the-
ory. We give definitions of the cotangent modules T i(B/A,M) (i = 0, 1, 2)
where A and B are rings andM is a B-module. We cite the necessary results
of Altmann and Christophersen from [AC10].

In Chapter 4 we define the Hibi ring and explain the construction of the
equatorial sphere ∆eq. We explain how in general G(d, n) degenerates to the
Hibi variety and then to the Stanley-Reisner scheme P(K).

Finally, in Chapter 5 we compute T i-modules for i = 1, 2 using the
results of Altmann and Christophersen. We explain how the family X → T
was constructed and we analyze its fibers.

There are three appendices. In Appendix A we briefly explain the com-
putational techniques used to obtain primary decompositions of the compli-
cated ideals occuring when studying the family. In Appendix B we include
Macaulay2-code for computing T 1 and T 2. We also include code for comput-
ing a presentation matrix of toric ideals. In Appendix C we include equations
of some of the ideals, and an explicit description of the equatorial sphere ∆eq.

Finally, I would like to thank my advisor, Jan Christophersen, for his
always open office and his enthusiasm.

Notation and terminology: We will often write := when defining
something. The notation N will always mean the non-negative integers, i.e.
the set {0, 1, 2, · · · }. The group PGL(V) is the quotient of GL(V) by the
subgroup of scalar matrices, i.e. scalar multiples of the identity matrix. All
rings and modules are commutative, and all rings have an identity element.
Fixing a number n, then we denote by k[x] the polynomial ring k[x1, · · · , xn].
A monomial in k[x] is a product xa := xa11 · · ·xann , where a = (a1, · · · , an) ∈
N. Thus we see that the ring k[x] is Nn-graded. An ideal I is a monomial
ideal if it is generated by monomials. We will write k[ε] for k[x]/(x2). The
symbol k will always denote a field, algebraically closed when necessary.



Chapter 1

Preliminaries

This chapter will give a short introduction to the background and notations
used in the subsequent chapters.

1.1 Some order theory

Definition 1.1.1. A partially ordered set or a poset is set P together with
a binary relation ≤ that is reflexive (a ≤ a), antisymmetric (a ≤ b and b ≤ a
implie a = b) and transitive (a ≤ b and b ≤ c implies a ≤ c). If a, b ∈ P
and a ≤ b or b ≤ a, then we say that a and b are comparable, otherwise they
are incomparable. If any two elements are comparable, then P is a totally
ordered set. �

All posets considered here will be finite.

Definition 1.1.2. An order ideal in a poset (P,≤) is a possibly empty subset
I ⊆ P such that if a ≤ b and b ∈ I then a ∈ I. Denote by J(P ) the set of
order ideals in P . �

Example 1.1.3. A poset can be visualized with its Hasse diagram. For
example, let X = {1, 2, 3}. If we form the power set P(X) and let the
binary relation be containment ⊆, we obtain a poset which can be visualized
as in Figure 1.1. ♦

Definition 1.1.4. A poset (L,≤) is a lattice if any two a, b ∈ L has a join
a ∨ b and a meet a ∧ b. They are the supremum and the infimum of {a, b}
with respect to the order ≤, respectively. The lattice is distributive if the
join and meet distribute over each other. �

1



2 CHAPTER 1. PRELIMINARIES

{1, 2, 3}

{2, 3} {1, 3} {1, 2}

{3} {2} {1}

∅

Figure 1.1: The Hasse diagram for P({1, 2, 3}).

Definition 1.1.5. An element K in a lattice L is called join-irreducible if it
is not the minimum of L and if it cannot be written as I∨J for I, J < K. �

Example 1.1.3 (continuing from p. 1). The poset (X,⊆) is a distributive
lattice with join union and meet intersection. The join-irreducible elements
are {3}, {2} and {1}. This is easily seen from the Hasse diagram in Figure 1.1.

♦

Every finite distributive lattice arises this way:

Theorem 1.1.6 (Birkhoff’s representation theorem). Let L be a distributive
lattice and let P be the poset of join-irreducible elements of L. Then L is
lattice-isomorphic to J(P ) with the induced poset structure and join union
and meet intersection.

Proof. See [Bir37].

Definition 1.1.7. Let P be a poset. A chain (of length n) in a P is a
sequence p1 < p2 < · · · < pn. A chain is maximal if it cannot be extended.
A poset is graded if every maximal chain has the same length. The rank of
a graded poset is the length of a maximal chain. �

For example, the poset in Example 1.1.3 is graded. A grading gives rise
to a rank function rank : P → N. We can define

rank(p) = sup
{
length of a chain ending at p

}
.

Thus, for example, the poset in Figure 1.1 has rank 3.
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1.2 Simplicial complexes and Stanley-Reisner rings

A Stanley-Reisner ring is a quotient of a polynomial ring by a square-free
monomial ideal. These ideals are described geometrically in terms of finite
simplicial complexes.

Definition 1.2.1. An (abstract) simplicial complex ∆ on the vertex set
[n] = {1, . . . , n} is a collection of subsets of the vertex set. The elements
of ∆ are called faces, and they are closed under taking subsets: if F ∈ ∆
and f ⊆ F , then f ∈ ∆. A face F ∈ ∆ of cardinality i+ 1 has dimension i
and is called an i-face of ∆. The dimension dim(∆) of ∆ is maxF∈∆ dimF .
The full simplex ∆d is the simplicial complex associated to the power set of
the vertex set [d]. A simplicial complex is pure if all maximal faces have the
same dimension. �

Note that a simplicial complex is determined by the set of its maximal
faces.

Definition 1.2.2. If P is a poset, then the order complex ∆(P ) of P is
the simplicial complex with vertices the elements of P and finite chains of
elements of P as faces. Note that ∆(P ) is pure if and only if P is graded. �

Definition 1.2.3. The order polytope O(P ) of a poset P is the convex hull
of {χI : I ∈ J(P )} ⊂ R#P , where χI is the characteristic vector of I, i.e.
χI(p) = 1 if p ∈ I and χI(p) = 0 otherwise. �

Example 1.2.4. Let ∆ be the simplicial complex with maximal faces {1, 2},
{2, 3} and {1, 3}. We see that, as topological spaces, ∆ ≈ S1. ♦

We define some natural operations on simplicial complexes:

Definition 1.2.5. Let f ∈ K. Then the link at f in K is the set

link(f,K) := {g ∈ K | g ∩ f = ∅ and f ∪ g ∈ K}.

If G is any other simplicial complex, then the join of K and G is the complex
defined by

K ∗ G := {f ∨ g|f ∈ K, g ∈ G},

where ∨ means disjoint union. If g ⊆ [n], denote by ḡ := 2g the full simplex
on g. Then we define ∂g := ḡ\{g} as the boundary of g. �
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For the category theory oriented reader, note that K ∗ G is the category
theoretic product of K and G.

Every simplicial complex K has a geometric realization, denoted by |K|.
It is defined as

|K| =
{
α : [n]→ [0, 1]

∣∣∣ {i | α(i) 6= 0} ∈ K and
n∑
i=1

α(i) = 1
}
.

Example 1.2.6. If ∆1,∆2 are two intervals, that is, two-vertex complexes,
then their join is a tetrahedron. We have ∂∆1 ≈ S0 as topological spaces. ♦

Example 1.2.4 (continuing from p. 3). If F = {1}, then link∆(F ) = {2, 3},
the disjoint union of the two other vertices. In general, if ∆ is a triangulated
n-sphere Sn, and f is any vertex of ∆, then link∆(f) is a triangulated (n−1)-
sphere Sn−1.

If Γ has maximal faces {0} and {4}, then ∆ ∗ Γ has maximal faces
{0, 1, 2}, {0, 2, 3}, {0, 1, 3}, {1, 2, 4}, {2, 3, 4} and {1, 3, 4}. It is a triangulated
2-sphere, so ∆ ∗ Γ ≈ S2. ♦

Definition 1.2.7. If f is an r-dimensional face of K, the valency of f , v(f),
is defined to be number of (r+1)-dimensional faces containing f . Thus v(f)
equals the number of vertices in link(f,K). �

We will occasionally use some notation for special simplicial complexes.
Write ΣK for the suspension of the complex K. Note that ΣK = K ∗ {1, 2}.
Write En for the boundary of the n-gon.

Now some algebra. Let k[x] := k[x1, . . . , xn], where k is a field. Simplicial
complexes determine squarefree monomials in the following way: A subset
σ ⊆ [n] give a squarefree vector in {0, 1}n, which has a 1 in the i’th spot
when i ∈ σ and a 0 otherwise. This allows us to write xσ =

∏
i∈σ x

i.

Definition 1.2.8. Let K be a simplicial complex. Its Stanley-Reisner ideal
is the squarefree monomial ideal

IK =
〈
xσ
∣∣σ 6∈ K〉 ⊆ k[x]

generated by the nonfaces of ∆. The Stanley-Reisner ring of ∆ is the quo-
tient ring AK := k[x]/IK. �

Note that if K = ∆1 ∗∆2, then AK = A∆1 ⊗k A∆2 .

Example 1.2.4 (continuing from p. 3). The simplicial complex ∆ give rise
to the Stanley-Reisner ideal (x1x2x3) in k[x1, x2, x3]. ♦
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We associate to Stanley-Reisner rings AK the schemes A(K) = SpecAK
and P(K) = ProjAK. The latter looks like the complex K – its simplices
have just been replaced by projective spaces intersecting in the same way as
the corresponding faces of ∆:

Theorem 1.2.9. The correspondence ∆ 7→ I∆ is a bijection from simplicial
complexes on [n] to squarefree monomial ideals in k[x]. More precisely, let
mτ denote the ideal 〈xi | i ∈ τ〉, where τ ⊂ [n]. Then

I∆ =
⋂
σ∈∆

mσ̄,

where σ̄ = {1, . . . , n}\σ, is the complement of σ in [n].

Proof. See the first chapter of [MS05].

Example 1.2.4 (continuing from p. 3). The Stanley-Reisner scheme P(∆)
is the union of three projective lines. ♦

For more on Stanley-Reisner rings, see [Sta96].

1.3 Initial ideals and Gröbner bases

We fix some notation and definitions about Gröbner bases. For more details,
see for example [Eis95, Chapter 15].

We can identify monomials in k[x] with points in Nn. A total order < on
Nn is a term order if the zero vector 0 is the unique minimal element and if
a < b implies a+ c < b+ c for all a, b, c ∈ Nn.

Given a term order on Nn, every polynomial f ∈ k[x] has an inital
monomial, denoted in<(f): it is defined as the highest term of f in the total
order on k[x] induced by the order on Nn. If I is an ideal of k[x], then its
initial ideal is the monomial ideal

in<(I) := 〈in<(f) | f ∈ I〉

generated by the initial terms.

Definition 1.3.1. Let I be an ideal in k[x] and < a term order. We say
that {f1, . . . , fr} is a Gröbner basis for I if

in<(I) = 〈in<(f1), . . . , in<(fr)〉

Note that a Gröbner basis is automatically a generating set for the ideal. �
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A Gröbner basis is minimal if no monomial in<(fi) is redundant, and
reduced if for any two fi, fj , no term of fj is divisible by in<(fi). The
monomials which do not lie in in<(I) are called the standard monomials.

Given a set of generators for an ideal I, there is an algorithm for com-
puting a Gröbner basis of I, called the Buchberger algorithm. For more on
this, see [Eis95] and the first chapter of [Stu96].

One also has the notion of an order by a weight vector. Fix ω = (ω1, · · · , ωn) ∈
Rn. For any polynomial

f =
∑

cix
ai

we define the initial form inω(f) to be the sum of all terms cixai such that
the inner product ω ·ai is maximal. For any ideal I we define the initial ideal
(with respect to ω) to be the ideal generated by the initial forms:

inω(I) :=
〈
inω(f) | f ∈ I

〉
.

If ω is chosen sufficiently generic, the initial ideal is monomial.
Fixing I and a term order <, there is always a weight vector ω repre-

senting <:

Proposition 1.3.2. For any term order < and any ideal I ⊂ k[x], there
exists a non-negative integer weight vector ω ∈ Nn such that

inω(I) = in<(I).

Proof. See [Stu96, Proposition 1.11] or [Eis95, Proposition 15.16]

The process of passing to the initial ideal is a flat deformation. This is
proved, for example, in [Eis95, Theorem 15.17]. The precise result takes the
following form. Set P := k[x] and let P [t] be a polynomial extension of P
in one variable. For any g ∈ P , define g̃ as follows. Write g =

∑
cix

ai as a
sum of monomials where ci ∈ k∗. Let b = maxi ω · ai and set

g̃ = tbg(t−ωix1, · · · , t−ωnxn)

Because of the way g̃ is defined, one sees that g̃ is inω(g) plus terms involving
t. For any ideal I, let Ĩ be the ideal of P [t] generated by {g̃ | g ∈ I}. It
follows P [t]/(t, Ĩ) = P/inω(I).

In fact we have:

Theorem 1.3.3. For any ideal I ⊂ P , the k[t]-algebra P [t]/Ĩ is flat as a
k[t]-module. Furthermore

P [t]/Ĩ ⊗k[t] k[t, t−1] = P/I[t, t−1]
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and
P [t]/Ĩ ⊗k[t] k[t]/(t) = P/inω(I).

Using the language of deformation theory, this says that there is a family
of deformations X → Spec k[t] such that the special fiber is SpecP/inω(I)
and the generic fiber is SpecP/I, where X = SpecP [t]/Ĩ, and all fibers
except the special fiber are isomorphic.

1.4 Toric ideals and triangulations

In this section we will introduce toric varieties as presented in [Stu96].
Let A = {a1, . . . ,an} be a finite subset of Zd. By abuse of notation, we

will also denote by A the d× n-matrix with columns the coordinates of the
elements of A. We call A a point configuration.

The point configuration A induces a semigroup homomorphism

π : N→ Zd, u = (u1, . . . , un) 7→
∑
i

uiai.

The image of π is the semigroup

NA =
∑
i

Nai.

The map π lifts to a homomorphism of semigroup algebras:

π̂ : k[x]→ k[t±1], xi 7→ tai .

The kernel of π̂ is the toric ideal IA. We will call any ideal obtained in
this way from a point configuration a toric ideal. This differs from the
terminology in, for example, [Ful93], in that we do not require toric ideals
to be normal. IA is clearly a prime ideal.

We write ZA for the sublattice of Zn spanned by A. The dimension of
A is defined as the dimension of ZA. We have the following:

Lemma 1.4.1. The Krull dimension of the residue ring k[x]/IA is dim(A).

Proof. This is Lemma 4.2 in [Stu96].

Every vector u ∈ Zn can be written uniquely as a difference u = u+−u−

where u+,u− ∈ Nn. Denote by kerπ the sublattice of Zn consisting of all
vectors u such that π(u+) = π(u−).
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The cone spanned by A is the set

cone(A) :=
{∑

i

ciai | ai ∈ A, ci ∈ R≥0

}
.

We have cone(A) = NA ⊗Z R. A fan is a finite collection of cones such
that each face of each cone is also in the collection, and such that any pair
of cones in the collection intersects in a common face. A fan is simplicial if
the generators of each cone are linearly dependent over R.

If< is any term order and I ⊂ k[x] is any ideal, then in<(I) is a monomial
ideal. We can associate to I a simplicial complex ∆<(I). It is called the
initial complex of I (with respect to <) and is defined as the simplicial
complex whose Stanley-Reisner ideal is the radical of in<(I).

Definition 1.4.2. If σ is a subset of A, then write cone(σ) for the cone
spanned by σ. A triangulation of A is a collection ∆ of subsets of A such
that the set {

cone(σ) | σ ∈ ∆
}

is the set of cones in a simplicial fan whose support equals cone(A). Note
that as a set, a triangulation is a simplicial complex. �

If A = {a1, · · · ,an}, identify the set A with the index set {1, · · · , n}.
Every sufficiently generic vector ω ∈ Rn defines a triangulation ∆ω as follows:
A subset {i1, · · · , ir} is a face of ∆ω if there is a vector c = (c1, · · · , cd) ∈ Rd
such that

aj · c = ωj if j ∈ {i1, . . . , ir} and
aj · c < ωj if j ∈ {1, . . . , n}\{i1, . . . , ir}.

Definition 1.4.3. A triangulation ∆ of A is regular if ∆ = ∆ω for some
ω ∈ Rn. �

Sturmfels shows in [Stu96] the following important theorem:

Theorem 1.4.4 (Sturmfels). Regular triangulations correspond to initial
complexes of the toric ideal IA. More precisely, if ω ∈ Nn represents < for
IA, then ∆<(IA) = ∆ω.

A triangulation is unimodular if vol(σ) = 1 for every maximal simplex
σ ∈ ∆. Here vol(σ) denotes the normalized volume. This translates into the
ideal IA being squarefree:

Proposition 1.4.5. The initial ideal in<(IA) is square-free if and only if
the corresponding regular triangulation ∆< of A is unimodular.

Proof. This is Corollary 8.9 in [Stu96].



1.5. SAGBI BASES 9

1.5 SAGBI bases

Let F = {f1, . . . , fn} be a set of polynomials in k[t] = k[t1, . . . , td] and let
R = k[F ] be the sub-algebra they generate. Fix a term order < on k[t].
The initial algebra in<(R) is the k-vector space spanned by the monomials
{in<(f) | f ∈ R}. A canonical basis or a SAGBI basis1 is a finite subset C
of R such that in<(R) is generated as a k-algebra by the set of monomials
{in<(f) | f ∈ C}.

Not all algebras possess canonical bases as the finiteness condition is
quite strong. For example, Sturmfels shows in an example in [Stu96] that
the invariant ring of the alternating group A3 has no finite canonical basis.

Suppose in<(fi) = tai , and let A ⊂ Nd be the set {a1, . . . ,an}. Let
k[x] = k[x1, . . . , xn] and consider the k-algebra map from k[x] onto k[F ] ⊆
k[t] defined by xi 7→ fi and let I be its kernel. Similarly, consider the map
defined by xi 7→ in<(fi). The kernel of this map is the toric ideal IA.

Now, let ω ∈ Rd be any weight vector representing the term order < for
the polynomials in F . If we consider A as a d×n-matrix with transpose AT ,
then ATω is a vector in Rn, which can be used as a weight vector on k[x].

Theorem 1.5.1. Suppose F is a canonical basis for the subalgebra it gener-
ates. Then

1. every reduced Gröbner basis G of IA lifs to a reduced Gröbner basis H
of I, i.e. the elements of G are the initial forms (with respect to ATω)
of the elements of H, and

2. every regular triangulation of A is an initial complex of the ideal I.

Proof. This is Corollary 11.6 in [Stu96].

In geometric terms, this says that every parametrically presented projec-
tive variety possessing a SAGBI basis deforms to a projective toric variety.

The theorem can be translated to a theorem in algebraic geometry.
Let k[F ] be a finitely generated homogeneous k-algebra possessing a finite
SAGBI basis. A presentation k[x] = k[x1, . . . , xn] → k[F ] gives an embed-
ding Proj k[F ]→ Pn−1. Let k[in<(F)] denote the algebra of initial forms of
F and let A denote the corresponding point configuration. Then the theorem
takes the following form:

1The acronym “SAGBI” stands for “sub-algebra analog for Gröbner bases of ideals”.
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Theorem 1.5.2. There exists a one-parameter family of embedded deforma-
tions η having Proj k[F ] as generic fiber and the toric variety Proj k[x]/IA
as special fiber.

Proj k[x]/IA

��

// X �
� //

π|X

��

Spec k[t]× Pn−1

π
xx

η :

Spec k // Spec k[t]

Here π is flat.



Chapter 2

The Grassmannian

In this chapter we introduce the Grassmannian and study its automorphism
group. In particular we study a group G of automorphisms coming from a
certain distributive lattice. This group will be important later on.

2.1 Definition

First, fix an n-dimensional vector space V over the algebraically closed field
k. Let G(d,V) be the Grassmannian of d-dimensional linear subspaces of V.

Note that to give a d-dimensional subspace of V is equivalent to giving
a (d − 1)-dimensional subspace of the projective space P(V) = Pn−1. Some
authors use the notation G(d,V) to mean the collection of d-dimensional
projective subspaces (for example [Har95]). For us, the notation will always
refer to the set of d-dimensional linear subspaces of V.

We will often refer to a d-dimensional linear subspace as a d-plane to save
space. When using coordinates, one often uses the notation G(d, n) instead
of G(d,V).

2.2 Projective structure

To fix notation, we describe the projective structure of the Grassmannian.
First choose some basis of V. Let M = (xij) be a generic d × n-matrix, so
that its row span is an element of G(d, n). Denote by [n] = {1, . . . , n} the set
of positive integers less than or equal to n. If I ⊆ [n] is a subset of cardinality
d, denote by MI the submatrix of M using the columns determined by I.

We have the following result:

11



12 CHAPTER 2. THE GRASSMANNIAN

Lemma 2.2.1. Let M be a d×n matrix. The set {detMI}#I=d of maximal
minors of M determines the row span of M uniquely. More precisely, a
matrix M ′ has the same row span as M if and only if there exists some
non-zero constant c such that detMI = cdetM ′I for all maximal minors
detMI .

Proof. See [MS05, Chapter 14].

We can thus use the N+1 minors {detMI}#I=d as projective coordinates
on the Grassmannian, where N =

(
n
d

)
− 1. Ordering them lexicographically,

we can represent a point W ∈ G(d, n) by [. . . ,detMI , . . . ] ∈ PN . These
coordinates are called the Plücker coordinates on PN .

The association of a matrix to its list of maximal minors determines a
closed embeddingG(d, n)→ PN in the following way: Let k[I] := k[. . . , I, . . . ]
be the polynomial ring with variables indexed by the subsets of [n] of car-
dinality d, and let k[. . . , xij , . . . ] be the polynomial ring with variables in-
dexed by the entries of a generic d × n-matrix X. Then one defines a map
k[I]→ k[xij ] by I 7→ detXI . The kernel of this map is known as the ideal of
Plücker relations, or just the Plücker ideal. For example, if d = 2 and n = 4,
the Plücker ideal is generated by the single quadratic homogeneous equation

[14][23]− [13][24] + [12][34].

We want to describe a Gröbner basis for the Plücker ideal. To do this,
it is convenient to introduce a poset P as follows. Let P be the poset whose
underlying set is the set of subsets of [n] of cardinality d. Then define
I ≤P J if Ii ≤ Ji for i = 1, . . . , d. Note that P has a natural structure
as a distributive lattice: If I = [i1 . . . id] and J = [j1 . . . jd], then we have
I∨J = [max(i1, j1), . . . ,max(id, jd)] and I∧J = [min(i1, j1), . . . ,min(id, jd)].
When thinking of it as a distributive lattice, we will denote it by Ld,n. For
example, if d = 2 and n = 4, the poset P = L2,4 have the form:

34

24

14 23

13

12

(2.1)

The lattice when d = 3 and n = 6 is included at the end of this chapter
as Figure 2.1. Note that when n = 2d, the associated distributive lattice has
a natural horizontal and vertical symmetry.
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It is well-known that the ideal of Plücker relations is generated by homo-
geneous quadrics: Totally order the maximal minors lexicographically, and
call this order 4 (so that it is a linear extension of ≤P). Also denote by 4
the reverse lexicographic term order on k[I] induced by the variable ordering
4.

Theorem 2.2.2. The ideal I of Plücker relations has a Gröbner basis under
4 consisting of homogeneous quadrics. More precisely, the products IJ of
incomparable pairs in the poset P generate the initial ideal in4(I).

Proof. This is proved for example in [MS05]. For a classical proof and an
explicit description of the relations, see the very readable article by Kleiman
and Laksov [KL72].

Example 2.2.3. Consider G(2, 4). A matrix representing a 2-plane is a
2× 4-matrix. The maximal minors are ordered as

[12], [13], [14], [23], [24], [34]

under 4. Thus the points of G(2, 4) in the Plücker embedding are precisely
the points

[x11x22 − x12x21 : x11x23 − x13x21 : · · · : x13x24 − x14x23] ∈ P6.

It is easy to recover a plane W from the Plücker coordinates and conversely.
For example, let W be the 2-plane that is the row span of the 2× 4-matrix
below: (

1 2 3 4
5 6 7 8

)
.

Then the Plücker coordinates of W are [1 : 2 : 3 : 1 : 2 : 1]. The matrix
can be recovered by first assuming that the submatrix M[12] is the identity
matrix (this is possible since this minor is non-zero), and then succesively
solve linear equations. ♦

The homogeneous coordinate ring of G(d, n) is thus the sub k-algebra
of k[xij ] generated by the maximal minors of a generic d × n-matrix. It is
well-known that the minors form a SAGBI basis for this sub-algebra. See
for example [Stu93].

The dimension of G(d, n) is easily computed: To give a d-plane in V
is equivalent to giving a d × n-matrix, but this is only unique up to left-
multiplication by a d× d-matrix. Hence dimG(d, n) = dn− d2 = d(n− d).
In particular, G(3, 6) = 3 · 3 = 9.
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2.3 Automorphism group

We want to know about the automorphism group of G(d,V).
First we fix some terminology: Let Aut(X) denote the set of all auto-

morphisms of X. If X ⊂ Y then Aut(X,Y ) is the subgroup{
ϕ ∈ Aut(Y )

∣∣ϕ(X) = X
}

of automorphisms of Y fixing X.
The results presented in this section motivate the choice of invariant

family used in the last chapter. The first result we will prove is that every
automorphism of the Grassmannian is projective. To prove this, we need a
lemma:

Lemma 2.3.1. The Picard group of the Grassmannian G(d,V) is isomorphic
to Z.

Proof. See [Ful97, Chapter 9.2].

We were unable to find a proof of the next proposition in the literature,
so we include a proof for completeness.

Proposition 2.3.2. We have

Aut
(
G(d,V)

)
= Aut

(
G(d,V),PN

)
.

Proof. The embedding ι : G(d,V) → PN provides a line bundle L such that
L ' ι∗OPN (1). It is generated by its global sections, which are the deter-
minants of the d-minors of a generic d × n-matrix. Any automorphism ϕ
of G(d,V) induces an automorphism of Pic G(d,V) = Z, so a generator of
Pic G(d,V) must be sent to another generator. Clearly, ϕ∗L = L, since
L∨ has no global sections. This means that ϕ induces an isomorphism of
k-vector spaces:

ϕ∗ : Γ(G(d,V),L)→ Γ(G(d,V),L).

But the d-minors are k-linearly independent (this follows since they form
a SAGBI basis), and so this isomorphim lifts uniquely to an isomorphism
of Γ(PN ,OPN (1)), and this in turn induces an automorphism of PN . It is
well-known that every automorphism of PN is of this form.

Remark. This proof is just a minor modification of Example 7.1.1 in [Har77],
where he proves that the automorphisms of Pn are given by PGL(n).
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We will give a description of the automorphism group of the Grassman-
nian.

Theorem 2.3.3 (Chow). If 2d 6= n, then

Aut
(
G(d, n)

)
= PGL(V).

If 2d = n, then
Aut

(
G(d, n)

)
= Z/2× PGL(V),

where V is a vector space of dimension n.

Remark. This was originally proved by Chow in 1949, in his paper “On
the geometry of algebraic homogeneous spaces”. A more modern treatment
was given in, for example, the paper “Automorphisms of Grassmannians” by
Cowen. See [Cho49] or [Cow89].

The theorem says that every automorphism of the Grassmannian is in-
duced by an automorphism of V if 2d 6= n. If however 2d = n, then there
is one additional automorphism coming from a duality map. We will quicly
describe it.

We introduce some notation. We want to define a map

∗ : G(d,V)→ G(n− d,V).

To do this, we need to identify V with its dual V∗: Choose a basis
{e1, . . . , en} of V and let {δ1, . . . , δn} be the dual basis. Then we define
ι : V → V∗ by ei 7→ δi. If j : V → V∗∗ is the natural isomorphism, we have
j ◦ ι = ιt.

For a linear subspace W ⊂ V, let W⊥ denote the annihilator of W : it is
the set of linear functionals that vanish on W :

W⊥ :=
{
λ ∈ V∗

∣∣λ(w) = 0 for all w ∈W
}
.

Then we define the map ∗ : G(d,V)→ G(n−d,V) by ∗(W ) = ι−1(W⊥). We
call the map ∗ the duality map (relative to the identification V ' V∗).

We give a sketch proof of Theorem 2.3.3.

Sketch proof of 2.3.3. Let V be a vector subspace of dimension d+ 1. Then
one defines the Schubert cycle

σ(V ) =
{
W ∈ G(d,V)

∣∣W ⊆ V }.
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Similarly, let V ′ be a vector subspace of dimension d− 1. Then one defines
the Schubert cycle

Σ(V ′) =
{
W ∈ G(d,V)

∣∣W ⊇ V ′}.
The proof goes like this: One shows that any automorphism of the Grass-
mannian must either preserve or reverse Schubert cycles, meaning that if
ϕ is an automorphism of G(d,V), then either ϕ(σ(V )) = σ(Ṽ ) for some
d + 1-dimensional Ṽ , or ϕ(σ(V )) = Σ(Ṽ ) for some d − 1 dimensional Ṽ .
For dimensional reasons, only one of these options can occur if 2d 6= n. If
2d = n, both can occur, so the duality isomorphism is allowed. Finally, one
shows that a Schubert cycle-preserving automorphism must come from an
automorphism of the n-dimensional vector space V.

Lemma 2.3.4. The map ∗ : G(d, n)→ G(n−d, n) is induced by the isomor-
phism

d∧
V →

n−d∧
V

given by sending a basis vector eI to εIJeJ where εIJ is such that eI ∧ eJ =
εIJe1 ∧ · · · ∧ en.

Example 2.3.5 (Two-planes in four-space). In this case, we compute that
the duality map is given by[

e12 : e13 : e14 : e23 : e24 : e34

]
7→
[
e34 : −e24 : e23 : e14 : −e13 : e12

]
.

Let V be the 2-plane given by the 2× 4-matrix(
1 3 5 7
0 2 4 6

)
.

Then its Plücker coordinates are given by P = [1 : 2 : 3 : 1 : 2 : 1] and
its image under the duality map is ∗P = [1 : −2 : 1 : 3 : −2 : 1]. This
corresponds to the matrix (

1 −2 1 0
2 −3 0 1

)
,

which is easily seen to be orthogonal to the original matrix. ♦
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2.4 Automorphisms coming from the lattice Ld,2d
When n = 2d, there are two obvious lattice isomorphisms of Ld,2d. One can
turn the lattice up-side down, and one can mirror it vertically. We name
these two automorphisms υ and λ, respectively (the upsilon for “up” and the
lambda for “left”). They induce obvious automorphisms of PN = P(∧dV).

Consider for example the distributive lattice associated to G(2, 4), as seen
in Equation 2.1. The automorphism λ is given by exchanging [14] and [23],
and leaving the other variables fixed. The automorphism υ is given similarly
by turning the lattice upside down.

Example 2.4.1. Let P be the plane given by the row span of the matrix(
1 2 3 4
5 6 7 8

)
.

The Plücker coordinates are given by [1 : 2 : 3 : 1 : 2 : 1] ∈ P5. Its image
under λ is then [1 : 2 : 1 : 3 : 2 : 1]. This corresponds to the plane given by
the matrix (

1 2 1 0
5 11 7 1

)
.

If we apply the duality map ∗ : G(2, 4)→ G(2, 4), we obtain the plane given
by the row span of the matrix(

4 −3 2 −1
8 −7 6 5

)
.

If we let M be the 4× 4 matrix
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ,

one sees that for the plane P , we have ∗ ◦ λ(P ) = M(P ), where M(P ) is
the image of the plane P under the linear transformation corresponding to
M . ♦

This last observation holds for all planes in G(2, 4), namely that ∗ ◦ λ =
M . It is proven by direct computation. In the rest of this section we will
show that the analogous statement holds also for G(3, 6).
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Lemma 2.4.2. Let V be a 6-dimensional vector space. The automorphism
λ ◦ ∗ ∈ PGL

(
∧3 V

)
is induced by the matrix

ϕ =



0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0

 ∈ PGL(V).

That is, we in formulas, we have ∧3ϕ = λ ◦ ∗.

Proof. This is again direct computation. Using Macaulay2, one calculates
that the matrix of λ ◦ ∗ equals the matrix of ∧3ϕ.

Lemma 2.4.3. Let V be a 6-dimensional vector space. The automorphism
υ ∈ PGL(∧3V) is induced by the matrix

ψ =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 ∈ PGL(V).

That is, in formulas, we have ∧3ψ = υ.

Proof. Direct computation.

Proposition 2.4.4. Let V be a 6-dimensional vector space. The automor-
phisms υ and λ of P(∧3V) induce automorphisms υ, λ ∈ Aut

(
G(3, 6)

)
, and

λ is not induced by an automorphism of V.

Proof. Every matrix χ ∈ GL(V) induces an automorphism of G(3, 6) by
right-multiplication of a matrix representing the row space of an element in
G(3, 6). Above it was shown that υ was induced by the invertible matrix ψ,
so it must induce an automorphism of G(3, 6).

Since we know that ∗ is an automorphism of G(3, 6), and that ∗ ◦ λ is
induced by the matrix ϕ, it follows that ∗ ◦λ is an automorphism of G(3, 6).
Applying ∗ = ∗−1 on the left implies that λ is an automorphism of G(3, 6).

Finally, λ cannot be the image of a matrix in GL(V), since from the
description of Aut(G(d, 2d)) as Z/2 × PGL(V), it follows that λ = (1, ϕ),
where the second factor represents automorphisms that are images of auto-
morphisms in GL(V).
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The automorphisms λ and υ generate a subgroup G of Aut(G(d,V))
isomorphic to Z/2× Z/2.

I have not been able to prove these results for all G(d, 2d), but the ma-
trices that show up have such symmetric shapes that one should be very
surprised if this does not hold generally.

[456]

[356]

[256] [346]

[156] [246] [345]

[146] [236] [245]

[136] [145] [235]

[126] [135] [234]

[125] [134]

[124]

[123]

Figure 2.1: The distributive lattice L3,6.
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Chapter 3

Deformation theory

This chapter gives a quick overview of the techniques of deformation theory
used in this thesis. Our main sources are [Har10] and [Ser06].

3.1 Deformation theory

Let X be a scheme over an algebraically closed field k. Deformation theory
studies how X varies in a flat family. Recall that a flat family is a flat
morphism of schemes X → S. A deformation of X over S is just a flat
family X → S such that S has a distinguished point 0 ∈ S, and such that
the the fiber over 0 is X. Thus a deformation of X is equivalent to giving a
cartesian square η:

X //

��

X
π
��

η :

Spec k // S,

where π is flat. We call S the parameter space and X the total space of
the family. If S is the spectrum of an Artinian ring, then we call η an
infinetesimal deformation. If S = Spec k[ε], then we call η a first-order
deformation. We call π−1(0) = X the special fiber.

If X ↪→ Pn is a closed embedding, one defines similarly an embedded
deformation η to be a cartesian commutative diagram:

X //

��

X
π|X
��

� � // Pn × S

π
{{

η :

Spec k // S

21
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If all the closed points of S have the same residue field k, it follows that
every fiber of X → S is a subscheme of Pn. Since π is flat, each fibre over
S has the same Hilbert polynomial P (t), under the additional hypothesis
that S is integral and noetherian (see for example Theorem 9.9, Chapter 2
in [Har77]).

Theorem 3.1.1 (Existence of the Hilbert Scheme). Let Y be a closed sub-
scheme of Pn. Then there exists a projective scheme H, the Hilbert scheme,
parametrizing closed subschemes of Pn with the same Hilbert polynomial P (t)
as Y , and there exists a universal subscheme X ⊂ Pn×H, flat over H, such
that the fibers of W over closed points of H are all closed subschemes of Pn
with the same Hilbert polynomial P (t).

Furthermore, H is universal: If S is a scheme and Pn× S ⊃ Y → S is a
family, all of whose fibers have the same Hilbert polynomial P (t), there is a
unique morphism S → H, such that

Y = S ×H X ⊂ Pn × S.

Proof. A proof can be found in [Ser06, Chapter 4.3].

Definition 3.1.2. For any subscheme Y of a scheme X, one can form the
normal sheaf

NY/X := HomOY
(I/I2,OY ),

where I is the ideal sheaf on Y in X. �

It is known that there is a 1–1 correspondence between embedded defor-
mations of Y ⊆ X over the dual numbers and global sections of the normal
sheaf NY/X .

If X = Pn−1, and Y is a closed subscheme with Hilbert polynomial
P (t), we can think of Y as a point on the Hilbert scheme H parametrizing
subschemes of Pn−1 with Hilbert polynomial P (t). Then it is easily seen that
NY/Pn−1 is naturally isomorphic to the Zariski tangent space ofH at the point
Y . Thus if Y corresponds to a non-singular point on H, the dimension of H
can be computed as the dimension of NY/Pn−1 .

Note that the Grassmannian G(d, n) is the Hilbert scheme parametrizing
subvarieties with Hilbert polynomial P (t) =

(
t+d−1
d−1

)
. The following example

gives a high-tech way to compute the its dimension.

Example 3.1.3. A d-plane W in an n-dimensional vector space V becomes
after projectivization a (d− 1)-plane in Pn−1. It is the complete intersection
of n− d hyperplanes, so that we have a surjection
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n−d⊕
i=1

OW (−1) −→ I/I2 −→ 0

of locally free sheaves of the same rank. This implies that this is an
isomorphism, so that we have equalities

NW/Pn−1 = Hom(I/I2,OW )

= Hom(

n−d⊕
i=1

OW (−1),OW ) =

n−d⊕
i=1

OW (1)

Thus h0(NW/Pn−1) = d(n − d), as expected, since that is the dimension of
the Grassmannian as computed in Chapter 2. ♦

3.2 The T i-functors

Let A be a ring. For an A-algebra B, we may form the cotangent complex,
and take its homology to form certain T i functors. We will briefly introduce
these functors. For details, see for example [Har10, Chapter 3].

Let R = A[x] be a polynomial ring surjecting onto B with kernel I, so
that we have an exact sequence

0 // I // R // B // 0.

Now choose a free R-module F presenting I, and let Q be the module of
relations, so that we have an exact sequence:

0 // Q // F
j // I // 0.

Let F0 be the submodule of F defined by all Koszul relations, namely the
relations of the form j(a)b − j(b)a for a, b ∈ F . Since j(F0) = 0, we have
that F0 is a submodule of Q.

Having defined these modules, we can define the cotangent complex :

L∗ : L2
d2 // L1

d1 // L0

Let L2 = Q/F0, L1 = F ⊗R B = F/IF , and let L0 = ΩR/A⊗R B. Let d2 be
the map induced by the inclusion Q→ F and let d1 be the map induced by
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the universal derivation d : R → ΩR/A. Then one checks that L∗ really is a
complex, and that it is well-defined.

If M is any B-module, we can form the complex homB(L∗,M). Taking
homology, one obtains, by definition, the T i-modules:

T i(B/A,M) := hi(HomB(L∗,M)),

where hi is the homology functor.
Let M = B. Then we have the following identifications:

� T 0(B/A,B) = HomB(ΩB/A, B) = DerA(B,B), the tangent module of
B over A.

� T 1(B/A,B) = coker
(
HomB(ΩR/A, B)→ HomB(I/I2, B)

)
.

� T 2(B/A,B) = HomB(Q/F0, B)/imd∨2 .

We will often just write T iB when M = B. It is known that T 1(B/k,B)
classifies first-order deformations of SpecB. Lets compute a toy example.

Example 3.2.1. LetB = k[x, y]/(xy) be the Stanley-Reisner ring associated
to the simplicial complex ∂∆1. We want to compute T i(B/k,B) for i =
0, 1, 2.

In the construction above, let R = k[x, y]. The the ideal (xy) is principal,
so the module of relations is zero. Thus T 2(B/k,B) = 0 since it is a quotient
of a zero module.

Again, since I/I2 is principal, we have an identification HomB(I/I2, B) '
B. Since ΩR/k ⊗R B is generated by dx and dy, the dual is generated by
∂
∂x and ∂

∂y . The map d2 sends a combination f ∂
∂x + g ∂

∂y to fy + gx, so that
the image of d2 is the ideal (x, y). Hence T 1(B/k,B) = B/(x, y) = k. This
means that all first-order deformations of B looks like k[x, y][t]/(xy− t). ♦

This construction may be globalized to schemes. That is, given a mor-
phism f : X → Y of schemes and a sheaf F of OX -modules, we get OX -
modules T i(X/Y,F) for i = 0, 1, 2.

3.3 Obstruction calculus

Given a set of first-order deformations of a projective scheme X, there is an
algorithm for lifting these to higher order. More precisely, given a deforma-
tion family X → T , where T = Proj k[t1, . . . , tn]/(t1, . . . , tn)2, one wants to
lift this deformation to higher and higher powers of the maximal ideal.
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We briefly describe an algorithm to do this, theMassey product algorithm.
We will follow the exposition in [Ilt11]. First, fix some notation. Let X =
ProjB = ProjS/I be a projective scheme, where S is a polynomial ring and
I as an ideal. Consider a free resolution of S/I:

· · · // Sl
R0
// Sm

F 0
// S // S/I // 0

Let φi ∈ Hom(Sm/imR0, S) (i = 1, . . . , t) represent a subset of a basis
for T 1(B/k,B). Introduce deformation parameters t1, . . . , tt, and let m =
〈t1, · · · , tt〉 be the ideal generated by the deformation parameters. Consider
the map F 1 : S[t]m → S[t] given by

F 1 = F 0 +
t∑
i=1

tiφi.

It follows that there is a map R1 : S[t]l → S[t]m with R1 ≡ R0 (mod m)
satisfying the first order deformation equation

F 1R1 ≡ 0 (mod m2).

The problem is to lift this solution modulo higher and higher powers of
m. In general, there are obstructions to doing this, and they are found in the
d-dimensional vector space T 2(B/k,B). For more on this, see for example
[Har10, Chapter 10].

What one can do instead, is try to solve the augmented deformation
equation

(F iRi)T + Ci−2Gi−2 ≡ 0 (mod mi+1), (3.1)

where (F iRi)T denotes the transpose of F iRi. Here, the matricesGi−2 : S[t]→
S[t]d and Ci−2 : S[t]d → S[t]l are congruent modulo mi to Gi−3 and Ci−3,
respectively. Furthermore, Gi and Ci vanish for i < 0, and C0 is of the form
V D, where V ∈ Hom(Sd, Sl) gives representatives for a basis of T 2(B/k,B)
and D ∈ Hom(Sd, Sd) is a diagonal matrix.

Given a solution (F i, Ri, Gi−2, Ci−2) of (3.1), one wants to lift the solu-
tion to work modulo mi+2. One solves first for F i+1 and Gi+1 by working
modulo I + im(Gi−2)T + mi+2. Having found these, one can solve for Ri+1

and Ci−1. This is exactly what the Macaulay2 package VersalDef does.
The matrices Gi now give equations for the base space of the lifted de-

formation for higher and higher powers of mi. In nice cases, the lifting stops,
meaning that equation (3.1) is true not merely modulo mi+1, but over S[t].
If we had used all deformation parameters, this would have been a versal
family for X. Note that if we were to hope for a versal family to exist, a
necessary condition is that T 1(B/k,B) is finite-dimensional over k.
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3.4 Deformation theory of Stanley-Reisner schemes

In the papers [AC04, AC10] Altmann and Christophersen describe how to
calculate T 1(B/k,B) and T 2(B/k,B) for Stanley-Reisner schemes purely in
terms of the combinatorics of the simplicial complexes. We briefly restate
the main results, and refer to their articles for details.

Let K be a simplicial complex with vertices [n]. Let AK denote the coor-
dinate ring of the Stanley-Reisner scheme associated to K. It has a natural
Zn-grading: xa has degree a. The AK-modules T i inherit this grading, so
that we have decompositions

T iAK =
⊕
c∈Zn

T iAK,c.

Every c ∈ Zn can be decomposed into a− b with a,b ∈ Nn. It will con-
ventient to write degrees as a fraction of variables: the expression Πix

ai
i /Πx

bj
j

will mean the degree a − b where a = (ai) and b = (bi). The support of
a = (ai) is a := {i ∈ [n] | ai 6= 0}.

Theorem 3.4.1. ([AC04, Theorem 13]) The homogeneous pieces in degree
c = a−b (with disjoint supports a and b) of the cotangent cohomology of the
Stanley-Reisner ring AK vanish unless a ∈ K, b ∈ {0, 1}n+1, b ⊆ [link(a)]
and b 6= ∅.

This says T ic(K) depends only on the supports a and b. Therefore we will
often denote it simply by T ia−b(K). The computations may be reduced to
the case a = ∅ by the following lemma:

Proposition 3.4.2. ([AC04, Proposition 11]) If b ⊆ [link(a)], then the map
f 7→ f\a induces isomorphisms T i∅−b(link(a,K)) ∼= T ia−b(K) for i = 1, 2.

Definition 3.4.3. Define B(K) to be the set of b ⊆ [K], |b| ≥ 2, with the
properties

1. K = L ∗ ∂b where L is a (n− |b|+ 1)-sphere if b 6∈ K

2. K = L ∗ ∂b ∪ ∂L ∗ b̄ where L is a (n− |b|+ 1)-ball if b ∈ K.

Note that if K is not a sphere, then B(K) = ∅. �

We need to recall some definitions from PL-topology: a combinatorial
n-sphere is a simplicial complex K such that |K| is PL-homeomorphic to
|∂∆n+1|. A simplicial complex K of dimension n is a combinatorial n-
manifold if for all non-empty faces f ∈ K, | link(f,K)| is a combinatorial
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sphere of dimension n− dim f − 1. In dimension less than four, all triangu-
lations of topological manifolds are combinatorial manifolds. For details, see
for example [Hud69].

Theorem 3.4.4. If K is a combinatorial manifold and c = a− b then

dimk T
1
AK,c =

{
1 if a ∈ K and b ∈ B(lk(a,K)),

0 otherwise.

A basis for T 1
AK

may be explicitly described: if φ ∈ T 1
AK
6= 0 and xp ∈ IK,

then φ(xp) = xaxp\b if b ⊆ p and 0 otherwise.

In [AC10] there is a table of simplicial complexes K with dimK ≤ 2 and
B(K) 6= ∅ together with the cardinality of B(K). The table is reproduced in
Chapter 5, Table 5.2.

The results for computing T 2
AK

are not as precise. We state a combination
of Proposition 4.8 in [AC10] and Lemma 4.2 in [CI11], where we assume that
|K| is a sphere and that K is a flag complex. Define Lb = ∩b′⊂b link(b′,K).

Proposition 3.4.5. If K is a simplicial flag complex such that |K| ≈ Sn,
then T 2

∅−b = 0 unless ∂b ⊂ K. If ∂b ⊂ K, then T 2
∅−b may be computed as

follows:

� If b ∈ K, then T 2
∅−b = 0.

� If b /∈ K, then T 2
∅−b ' H̃0(|K|\|∂b ∗ Lb|, k) ' H̃n−|b|(Lb, k).

This is true even when the degree n − |b| = −1 with the convention that
H̃−1(∅) = k.

We will use these results to compute T iAK (i = 1, 2) for an actual example
in Chapter 5.



28 CHAPTER 3. DEFORMATION THEORY



Chapter 4

Degenerations of G(d, n)

In this chapter we describe how in general the Grassmannian G(d, n) degen-
erates: first to a toric variety, then to a Stanley-Reisner scheme. The chapter
follows the exposition of [CHT06] closely.

4.1 The Hibi ring

We first define for any distributive lattice L a projective toric variety ProjHL.
Let L be a distributive lattice and let k[L] be the polynomial ring whose

variables are the elements of L. For each pair of elements I, J ∈ L, define
the Hibi relation

IJ − (I ∧ J)(I ∨ J).

The Hibi ideal (or the lattice ideal) IL is the ideal generated by the Hibi
relations. Note that if I and J are comparable, then the Hibi relation van-
ishes, so we need only consider incomparable elements. The Hibi ring is the
k-algebra HL = k[L]/IL.

Takayuki Hibi proved in [Hib87] the following theorem:

Theorem 4.1.1 (Hibi). If L is a distributive lattice, then

� the Hibi ring HL is a toric, normal, Cohen-Macaulay algebra with a
straightening law,

� the ideal IL has a quadratic squarefree initial ideal whose associated
simplicial complex is the chain complex of L, and

� HL is Gorenstein if and only if the poset of join-irreducibe elements of
L is graded.

29
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Let P be the poset of join-irreducible elements in L such that L is iso-
morphic to J(P ) as distributive lattices, and let O(P ) be the order polytope
of P , that is, the convex hull of the characteristic vectors. Let M(O(P )) =
cone({1} × O(P )) be the cone over the polytope. Then Birkhoff’s theorem
implies that HL = k[M(O(P ))]:

Proposition 4.1.2. H(L) is isomorphic to the semigroup ring k[M(O(P ))].

We have of course already seen distributive lattices. See Equation 2.1 and
Figure 2.1 in Chapter 2. For example, in the distributive lattice associated
to G(2, 4), the only incomparable elements are [14] and [23], and so the
Hibi ideal is just generated by the single binomial [14][23] − [13][24]. This
implies in particular that the Hibi variety, ProjHL is a cone over the Segre
embedding of P1 × P1.

In fact, this is always the case. If Ld,n is the lattice associated to a
Grassmannian G(d, n), then the minimum and the maximum of the lattice
never occur in the Hibi relations, so that ProjHLd,n is always the cone over
a toric variety.

4.2 The equatorial sphere

We describe the equatorial sphere of Reiner and Welker, as presented in their
paper [RW05]. Througout this section, let P be any graded poset having n
elements and of rank r.

Reiner and Welker give for every graded poset P a special triangulation of
the order polytope O(P ). The triangulation has several pleasant properties
of which we list two:

� It is a unimodular triangulation.

� It is isomorphic, as an abstract simplicial complex, to the join of an
r-simplex with a (#P − r − 1)-sphere, which we will denote by ∆eq.
This is the equatorial sphere.

Definition 4.2.1. A chain of order ideals I1 ⊂ I2 ⊂ . . . ⊂ It is called
equatorial if f :=

∑
χIi satisfies minp∈P f(p) = 0 and for every j ∈ [2, r],

there exists a covering relation pj−1 < pj with pj−1 of rank j − 1 and pj of
rank j such that f(pj−1) = f(p). �

Definition 4.2.2. A chain of order ideals I1 ⊂ I2 ⊂ . . . ⊂ It is called rank-
constant if it is constant along ranks, i.e. if f(p) = f(q) whenever p and q
are elements of the same rank in P . �
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Definition 4.2.3. The equatorial complex ∆eq is the subcomplex of the
order complex ∆(J(P )) whose faces are indexed by equatorial chains of order
ideals. �

Reiner and Welker proves in [RW05] the following:

Proposition 4.2.4. The collection of all cones

conv(χI : I ∈ R ∪ E),

where R (resp. E) is a chain of non-empty rank-constant (resp. equatorial)
ideal in P , gives a regular unimodular triangulation of O(P ).

We call the above triangulation the equatorial triangulation of O(P ).
The proposition implies that it is abstractly isomorphic to ∆eq ∗∆d (this is
Corollary 3.8 in [RW05]).

Example 4.2.5. Consider the lattice L2,4 associated to G(2, 4). Then one
computes that ∆eq = ∂∆1, is the two-point simplicial complex {[14], [23]},
so that ∆eq ≈ S0. ♦

Example 4.2.6. Consider G(2, 5). The one computes that ∆eq is a pen-
tagon. ♦

Example 4.2.7. Consider G(3, 6). The poset P of join-irreducible element
of L3,6 is shown in Figure 4.1. The poset P has rank 5 and cardinality 9.
It follows from the Reiner-Welker construction that P has a triangulation
isomorphic to ∆eq ∗∆5, where ∆eq is a 9− 5− 1 = 3-sphere.

In J(P ) = L3,6 in Figure 2.1, the rank-constant elements are [123], [124],
[135], [246], [356] and [456]. ♦

Recall that in Chapter 2 we studied an automorphism subgroup G of
Aut(G(d, 2d)). In this case, the lattices Ld,2d are horizontally and vertically
symmetric, and the rank-constant element lie on the vertical axis. It follows
that the action of G on Ld,2d induces an action on ∆eq. This will be used in
the next chapter.

Notice also that the action sends Hibi-relations into Hibi-relations, so
that we have an action on the Hibi ring HLd,2d also.

4.3 The degenerations of G(d, n)

In Chapter 2 we stated that the homogeneous coordinate ring of the Grass-
mannian is the k-algebra generated by the d× d-minors of a generic d× n-
matrix. Let < be any diagonal term order, meaning that the main diagonal
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[456]

[156] [345]

[126] [145] [234]

[125] [134]

[124]

Figure 4.1: The poset of join-irreducible elements of L3,6.

term is the initial term for each d× d-minor. The set of maximal minors is
a SAGBI basis for this algebra under the term order <.

The SAGBI property of the d×d-minors implies immediately from Propo-
sition 1.5.1 that there is a degeneration of Proj k[detXI ] = G(d, n) to the
toric variety Proj k[in<(detXI)].

Lemma 4.3.1. The semigroup ring k[in<(detXI)] is isomorphic to the Hibi
ring HLd,n .

Proof. By counting, one sees that

in<(detXI)in<(detXJ) = in<(detXI∨J)in<(detXI∧J),

so that we have a surjective map onto the Hibi ring. The map must be an
isomorphism since both rings are integral domains of the same dimension.

Now, from Proposition 4.2.4, we know that the polytope defining the Hibi
ring has a regular unimodular triangulation, corresponding to a simplicial
complex K = ∆eq ∗ ∆d. Regular triangulations of polytopes correspond to
initial ideals of toric ideals from Theorem 1.4.4, and it follows that the Hibi
ring degenerates to the Stanley-Reisner ring AK = k[I]/IK.

We sum this up in a theorem:
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Theorem 4.3.2. Let G(d, n) ↪→ PN be the Grassmannian in its Plücker
embedding. Then there exists a flat family X → S of embedded deformations
having the Grassmannian as generic fiber and the Hibi variety ProjHLd,n
as a fiber at a closed point. The special fiber is the Stanley-Reisner scheme
ProjAK where K = ∆eq ∗∆d.

This implies of course that every invariant of the Grassmannian in the
Plücker embedding that is invariant under deformation is shared by the Hibi
ring and the Stanley-Reisner scheme. In particular, they all have the same
dimension, degree and are all Gorenstein. The last property follows since we
know that the central fiber ProjAK is Gorenstein.
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Chapter 5

Degeneration of G(3, 6)

Using the theory of the previous chapters, we construct a specific example of
a deformation having the Stanley-Reisner scheme P(∆eq ∗∆5) as the special
fiber, and the Grassmannian G(3, 6) as generic fiber.

5.1 The equatorial sphere

Using a computer program, we constructed the equatorial sphere ∆eq of
Reiner and Welker. It has 14 vertices and 42 maximal faces. The f-vector
was computed to be (14, 56, 84, 42). We will denote it by S.

Its automorphism group was calculated using the computer algebra soft-
ware SAGE [S+12], and it is isomorphic to Z/2×D4. The vertices come in
three orbits, of size 8, 4, 2, respectively. The size two orbit corresponds to
the action of flipping the distributive lattice L3,6 up-side down.

One way to describe a three-dimensional simplicial sphere is by its links
at vertices, which are two-dimensional spheres. The links come in three
isomorphism classes. They are described in Figure 5.1.

The links at other vertices can be obtained by applying automorphisms.
We have written down the orbits of the drawn links in Table 5.1.

5.2 Calculation of T i
AS

i = 1, 2

In this section we will calculate a basis in degree zero and less of the modules
T 1
AS

(i = 1, 2) using the results of [AC10]. We first consider T 1
AS

.

35



36 CHAPTER 5. DEGENERATION OF G(3, 6)
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(a) Link at 7.

5

17
16

7

14

2

6

(b) Link at 8.
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(c) Link at 16.

Figure 5.1: The three isomorphism classes of links at vertices.
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Link at 16 7 3 12 9 11 17 2 8 10 6
Link at 14 7 3 12 15 11 5 2 8 10 6
Link at 10 11 5 17 2 7 12 9 15 16 14
Link at 6 11 5 17 8 7 3 9 15 16 14
Link at 7 6 3 12 10 2 8 14 16
Link at 11 5 17 16 9 15 14 10 6
Link at 8 6 3 12 10 2 8 14
Link at 15 6 3 12 10 11 14 9
Link at 3 16 9 15 14 7 6 12
Link at 17 6 8 2 10 11 16 5
Link at 2 14 5 17 16 7 10 8
Link at 5 6 8 2 10 11 14 17
Link at 9 6 3 12 10 11 16 15
Link at 12 16 9 15 14 7 10 3

Table 5.1: All links isomorphic to the link at 10.

5.2.1 The first-order deformations

Using Theorem 3.4.4 and Table 5.2, one can find an explicit basis for T 1
AS ,c

for each graded piece c.

K B |B(K)|
∂∆1 {{K}} 1
∂∆2 P≥2([K]) 4
E4 = K1 ∗ K2,Ki = ∂∆1 {{K1}, {K2}} 2
∂∆3 P≥2([K]) 11
ΣE3 = ∂∆1 ∗ ∂∆2 B(∂∆1) ∪ B(∂∆2) 5
ΣE4 = ∂∆1 ∗ E4 B(∂∆1) ∪ B(E4) 3
ΣEn = ∂∆1 ∗ En, n ≥ 5 {{∂∆1}} 1
∂C(n, 3), n ≥ 6 {{∂∆1}} 1

Table 5.2: The non-empty B(K), reproduced from [AC10].

We want to find all degree zero pieces of T 1
AS

. We do this systematically
by considering each of the illustrations in Figure 5.1. There is one figure for
each isomorphism class of a link at a vertex, so we need only consider each
figure, keeping track of which combinations we count.

Note that there cannot be any contributions in degree a−b with |a| = 3,
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because then link(a,S) = ∂∆1, a simplicial complex having two vertices,
and since we must have b ∈ {0, 1}n and |b| = 3, this makes no contributions
possible.

We first look at the vertex a = {x7} in order to find contributions with
b ⊆ [link(a,S)]. See Figure 5.1a). Then Table 5.2 shows that B(link(x7,S)) =
{{∂∆1}}, where ∂∆1 = {x14, x16}, so that the degree zero element we have
is in degree x27

x14x16
. Since there are two elements in the orbit of {x7}, we have

2 elements of this type.
Still considering link({x7},S), we consider a with |a| = 2, that is, a

with the first element x7 and with the second lying in link({x7},S). We see
that choosing either a = {x7, x16} or a = {x7, x14} gives B(link(a,S)) = ∅
(because then link(a,S) is a hexagon, which is not listed in Table 5.2). There
are six other possibilities for a second element, and all of these lie on the
suspended circle. These come in two types: the ones lying in the size 8
orbit and the ones lying in the size 4 orbit. No matter which element on
the suspended circle we choose, we have that link(a,S) is a quadrilateral.
From the table, we see that quadrilaterals contribute with 2 each. In total
the a’s with |a| = 2 and with link(a,S) a quadrilateral contribute with
6 · 2 · 2 = 24 elements (number of elements on the circle multiplied with the
number of contributions multiplied with the size of the orbit). These are
elements of degree of the form x7xi

xjxk
(where xj and xk are opposite corners

on the quadrilateral link(K, {x7, xi})).
Now we look at Figure 5.1b. This link, link({x8},S) is the suspension of

a pentagon. Choosing a = {x8}, one finds one element of total degree zero
in degree x28

x2x6
. There are 8 isomorphism classes, so we have 8 elements of

this type.
Now consider a with |a| = 2 and a ⊆ [link({x8},S)]. We have three

possible types of such an a. There are two elements on the suspended circle
in the same orbit as x8, so we get 2 · 2 · 8/2 = 16 elements of degree, for
example, x8x5

x14x17
and x8x5

x6x2
. There are two elements in the same orbit as x14, so

we get 2 ·2 ·8 = 32 elements of degree, for example, x8x14x2x6
and x8x14

x5x7
. Finally,

there is one element in the orbit {x7, x11}, but we have already counted this.
Now consider link({x16},S), seen in Figure 5.1c. Here there are no con-

tributions with |a| = 1, so we must look for contributions with |a| = 2. Thus
all contributions must come from vertices in link({x16},S) with valency 4.
There are two of these, but have already counted them.

All in all, we see that T 1
AS ,0

has a basis consisting of 2+24+8+16+32 = 82
elements. We sum this up in a proposition:
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Proposition 5.2.1. The space of first-order deformations of P(S), T 1
AS ,0

, is
82-dimensional.

We can describe the basis explicitly: if φ ∈ TAS ,c 6= 0 then a generator
xp ∈ IS is mapped to φ(xp) = xaxp\b if b ⊆ p, and 0 otherwise. Since the
ideal IS is generated by quadratic monomials and all |b| = 2, this means
the first-order perturbed ideal is generated by xb + εxa plus possibly non-
perturbed generators.

We are also interested in lower degree contributions. The only contribu-
tions with in degree −1 arise when a is a vertex with link(a,S) a n-gon, and
they are of the form xi

xjxk
, and there are ten of them.

From the definition of B(S), we see that there are no contributions with
a = ∅ and |b| = 2. There can’t be any contributions with |a| > 2.

Summed up:

Lemma 5.2.2. The degree −1 piece of T 1
AS

is 10-dimensional. All pieces of
lower degree vanish.

5.2.2 The obstruction module, T 2
AS

We want to compute T 2
AS

in degree zero and lower.
Recall that a simplicial complex is flag if it has no empty simplices. It

is a easy result that a simplicial complex is flag if and only if its Stanley-
Reisner ideal is generated by quadratic monomials. This is the case for our
simplex, S. In this case, we have the following result from [CI11]:

Proposition 5.2.3. If K is a flag complex and b ∈ K and |b| ≥ 2, then
T i∅−b(K) = 0 for i = 1, 2.

This means that we don’t need to check b ∈ S, but we still want ∂b ⊂
S. We first find the degree zero contributions. There are several cases to
consider:

� |a| = |b| = 1: In this case, b is a vertex, and we have from Proposition
3.4.5 that T 2

a−b = H̃1(link(a,S), k). But link(a,S) is always a 2-sphere,
and in this case H̃1 vanishes.

� |a| = |b| = 2: We can assume that b 6∈ S. In this case, the theorem
tells us that T 2

a−b = H̃−1(Lb, k), where by convention H̃−1(∅, k) = k.
Thus to have a contribution we must have Lb = ∅. Every link with
|a| = 2 is a 1-sphere, i.e. an n-gon, and the only n-gons possibly with
Lb = ∅ are those with n ≥ 6. This is also the the largest n-gon that
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occurs in our K, and the only n-gons that occur as links of 2-faces
are 5-gons and 6-gons. From the figures, wee see that there are two
possible choices in the orbit of {x7}, namely {x7, x16} and {x7, x14}.
The orbit has size two, so there are four contributions of this form.
In Figure 5.1c, there are six vertices with valency four, two of which
we already have counted. They are {x16, x10} and {x16, x6}. Applying
automorphisms, we see that these two elements constitute an orbit of
size four, so that in total there are 4 + 4 = 8 two-faces with Lb = ∅.
Each 6-gon contributes 3, so we have a total contribution of 3 · 8 = 24.

� There is also the possibility of |a| = 1, but raised to an exponent
of 2, so that we must have |b| = 2. Then the theorem tells us that
T 2
a−b = H̃0(Lb, k). This means that we must look for links of vertices

with Lb having two or more path components. In the link at {x7},
we see three such candidates, namely opposite vertices on the circle.
This gives 6 contributions. On the figure of the link at {x16}, we
find after close inspection two possibilities: {x6, x10} and {x7, x11}.
Looking at the orbit of this combination, we see that this gives 2 ·4 = 8
contributions. In total there are 14 contributions of this type.

One checks that the above possibilities are all that can occur, so one
concludes that T 2

AS ,0
has dimension 24 + 14 = 38.

To find the contributions in degree −1, one notes that the only possibility
is when |a| = 1 and |b| = 2. But there are fourteen of these, as we counted
above.

In degree −2 there are 3 contributions, and they all occur when a = ∅
and |b| = 2. The two first contributions are in degree 1

x6x10
and degree 1

x14x16
,

respectively. In each of these cases, Lb looks topologically like D2 ∨ S1, so
we have H1(Lb, k) = k. The other contribution occur in degree 1

x7x11
, and

in this case Lb is topologically a circle, which has H1(Lb, k) = k.
We sum this up in a proposition:

Proposition 5.2.4. The module T 2
AS

has dimension 3, 14 and 38 in degree
−2,−1 and 0, respectively.

5.3 Construction of the EHG family

We know from the previous chapter that there is a degeneration of the Grass-
mannian to the Stanley-Reisner ring P := AS∗∆5 = AS ⊗k k[y1, · · · , y6]. By
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base extension, we have that T 1
P = T 1

AS
⊗k k[y1, · · · , y6], so that

dimk T
1
P,0 = 82 + 6 · 10 = 142,

since T 1
AS ,−1 has dimension 10, as calculated above.

Proposition 5.3.1. The space of first-order deformations, T 1
P,0, of P(S ∗∆5)

is 142-dimensional.

The obstruction module T 2
AS

was calculated in the previous section in
degree zero and below. We know from the deformation theoretic chapter
that all obstructions to liftings lie in T 2

P,0, which by the previous section has
dimension 38+6 ·14+21 ·3 = 185. The family we construct has obstructions,
as we will see below.

It was not computationally feasible to compute a versal deformation,
i.e. a deformation using all 142 deformation parameters. What we did, was
to choose among the first order deformations some “suitable” deformation
parameters. First, we looked for deformation parameters coming from AS
creating the Hibi relations – there were only 16 such element in T 1

AS ,0
. The

group G = Z/2×Z/2 acts on T 1
P,0, decomposing it into 21 orbits1. The first

order deformations creating the Hibi relations constitute four such orbits –
by looking for missed monomials we chose two additional orbits - one of size
two, containing one element in each of the degrees x11x20

x6x10
and x1x7

x14x16
, and one

of size four.
Using the Macaulay2 package VersalDef [Ilt11], we used these first-order

deformations to lift to higher order. The lifting stops, so we end up with a
flat family X → T̃ , where the base space T̃ is a variety defined by binomials.
It was computed to be reducible as the union of 13 irreducible toric varieties.
The largest irreducible component has dimension 14 and contains the Grass-
mannian G(3, 6) as a fiber. It has, of course, the Stanley-Reisner scheme
P(S ∗∆5) as its special fiber. A degeneration to the Hibi ring is obtained by
setting the deformation parameters in two of the six chosen orbits in T 1

P,0 to
zero. Call the component of dimension 14 T . Equations for T̃ and T can be
found in Appendix C.

We sum this up in a theorem:

Theorem 5.3.2 (The EHG-family). There exists a family of deformations
X → T of the Stanley-Reisner scheme P(K ∗∆5) having the Grassmannian

1Recall that the action was induced by horizontal and vertical mirroring of the lattice
L3,6.
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G(3, 6) as fiber and as an intermediate fiber the Hibi ring. The base space T
is a 14-dimensional irreducible toric variety.

X

��

X ×T ′ Too

��

P(K ∗∆5)

��

oo

T T ′oo Spec koo

Here T ′ denotes the restriction of the base space T such that the generic fiber
is the Hibi variety.

We are only interested in the component of the base space that has the
Grassmannian as a fiber. It is a toric variety of dimension 14, so that it can
be represented by some semigroup ring k[M], generated by the columns of
a matrix M. The ring is not changed by column operations of the matrix
M, and we discovered that the column space of the matrix could also be
represented by a matrixM′, having the form:

M′ =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 -1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 -1 0 0 0 0 0 -1 0 1 0 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0


This means that if we identify the parameters in the same orbit, the

obstruction ideal vanishes. In other words, the invariant subspace T G of T
is affine, isomorphic to A6. This gives a smooth 6-dimensional family with
the Grassmannian as the general fiber.

The special form of M′ implies that the cone associated to T is the
Cayley cone over ∆1,∆2, · · · ,∆6, where the first five ∆i are 3-simplexes,
and ∆6 is an interval.

From now on, we name the parameters si, for i = 1, · · · , 6. We obtain
the Grassmannian by setting each si = −1, and be obtain the Hibi ring by
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s1 = s2 = s4 = s5 = −1 and s3 = s6 = 0. The equations for the invariant
family are included in Appendix B.

We would like to analyze the fibers of X → A6. Because of the large
number of variables, this was not possible for general si (i = 1, · · · , 6). It
was possible however over the subspaces where, say, five of the six si’s were
set to zero. Computations here showed that these fibers were invariant up to
isomorphism under scaling the deformation parameter. We suspect that this
holds generelly: namely, that the fiber over (a1, · · · , a6) ∈ A6 is isomorphic
to the fiber over (c1a1, · · · , c6a6) for non-zero ci. This would be true for
example if there were some torus action on A6 that extends to a torus action
on X . We have not however been able to prove the existence of such an
action.

Conjecture 5.3.3. There are only finitely many isomorphism classes of
fibers in the family X → A6.

5.3.1 The fibers of the invariant family

In the rest of the chapter we will analyze the fibers of X → T G = A6 when
each si ∈ {0,−1}. When referring to specific fibers, we will use the notation
X123, for the fiber where s1 = s2 = s3 = −1, and s4 = s5 = s6 = 0, et
cetera.

Most of the fibers are reducible and most of them share isomorphic com-
ponents. Many of the components of the fibers admit nice descriptions in
terms of sublattices of L3,6 or in terms of punctured matrices. A punctured
matrixM is a matrix with entries in not all positions (see the next few pages
for examples). The variety associated to M is the zero set of a maximal set
of 2 × 2-minors. That is, the zero set of all {xijxkl − xilxkj} such that
all M(i, j),M(k, l),M(i, l),M(k, j) are defined. They can be seen to corre-
spond to distributive lattices (in such a way that the Hibi ring associated to
the distributive lattice is equal to the coordinate ring of the zero set of the
2× 2-minors of the punctured matrix).

Example 5.3.4. The punctured matrix on the left in Figure 5.2 corresponds
to the the distributive lattice on the right. One sees that the correspondence
is far from one-to-one. ♦

We first describe what type of of components of fibers occur. Recall that
to obtain the Hibi ring, one sets the deformation parameters s1, s2, s4, s5 all
equal to −1. If A = {a1, · · · , an} is the vector configuration of the order
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∣∣∣∣∣∣
− 3 4
9 12 10
16 7 −

∣∣∣∣∣∣
(a) A punctured matrix.

4

3 10

12

9 7

16

(b) A distributive lattice.

Figure 5.2: Correspondence between punctured matrices and distributive
lattices.

polytope (corresponding to the Hibi ring), then the ring k[x1, · · · , xn] is A-
graded, by setting each deg xi = ai. So IA is an A-graded ideal, and it
follows that the initial ideal in<(IA) is A-graded as well.

One can check that the deformation parameters all have weight zero in
the A-grading. It follows that the ideal obtained by using these deformation
parameters is A-graded. We are therefore in position to apply a theorem of
Sturmfels:

Theorem 5.3.5 (Sturmfels). If I is any A-graded ideal, then there is a
polyhedral subdivision ∆ of A such that

√
I =

⋂
σ∈∆

Jσ,

where Jσ is a prime ideal torus isomorphic to Iσ. (here Iσ denotes the ideal
Iσ + 〈xi|ai 6∈ σ〉)

Proof. See [Stu96].

In our case, all fibers are radical, so we can forget about the square root
sign. What this mean is the following: All fibers obtained using the defor-
mation parameters {s1, s2, s4, s5} correspond to polyhedral subdivisions of
A. A minimal polyhedral subdivision will be just the cone of A, and a max-
imal polyhedral subdivision corresponds to a triangulation of the associated
simplicial complex.
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This is good for visualization purposes: What happens when we deform
the Stanley-Reisner ring is that linear spaces are “glued” together successively
until we arrive at the Hibi ring. In cone-language: (cones of) triangles in the
triangulation merge together until there is only one cone left.

Note that this confirms our Conjecture 5.3.3 over the locus where s3 =
s6 = 0. We computed all the fibers when si ∈ {0,−1}. We state this as a
theorem:

Theorem 5.3.6. The fibers in the family X → T G |s3=s6=0 are the schemes
listed in Table 5.3.

Assuming Conjecture 5.3.3, we have:

Theorem 5.3.7. The fibers in the family X → T G are the schemes listed in
Tables 5.3 and 5.4. There are some irreducible fibers that is not isomorphic
to HL3,6 , and we describe those in the next section.

After the tables we explain the notation.

Fiber Isomorphism class # of this type

X1
P9 26
C7(P1 × P1) 8

X2
P9 26
C7(P1 × P1) 8

X4

P9 10
C7(P1 × P1) 2
C3(S1) 12

X5

P9 10
C7(P1 × P1) 2
C3(S1) 12

X12

P9 14
C7(P1 × P1) 8
C6(P1 × P2) 4

X14

P9 10
C7(P1 × P1) 4
C6(S1) 2
C3(S2) 4

X24

P9 2
C7(P1 × P1) 4
C6(S1) 2
C6(P1 × P2) 8

Continued on next page
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Table 5.3 – Continued from previous page
Fiber Isomorphism class # of this type

X25

P9 2
C7(P1 × P1) 4
C6(S1) 2
C6(P1 × P2) 8

X15

C7(P1 × P1) 2
C4(P1) 2
C5(P2) 4

X45
C2(P3) 2
C3(P4) 2

X124

P9 2
C7(P1 × P1) 4
C5(P2) 4

X125
C6(T1) 2
C6(T2) 2

X145 C6(T3) 2

X245
C7(T4) 2
C8(T5) 2

X1245 Hibi. 1

Table 5.3: Degenerations of the Hibi ring.

Fiber Isomorphism class # of this type

X3
P9 26
C7(P1 × P1) 8

X6 P9 18

X16

P9 2
C7(P1 × P1) 4
C6(P1 × P2) 8
C6(S1) 2

X13

P9 14
C7(P1 × P1) 8
C6(P1 × P2) 4

X23

P9 14
C7(P1 × P1) 8
C6(P1 × P2) 4

Continued on next page
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Table 5.4 – Continued from previous page
Fiber Isomorphism class # of this type

X26

P9 18
C7(P1 × P1) 4
C3(S2) 4

X34

C4(P1) 2
C5(P2) 4
C6(P1 × P2) 2

X35

P9 10
C7(P1 × P1) 4
C6(S1) 2
C3(S2) 4

X36

P9 2
C7(P1 × P1) 4
C6(S1) 2
C6(P1 × P2) 8

X46

P9 2
C7(P1 × P1) 8
C6(S1) 2

X56

P9 2
C7(P1 × P1) 8
C6(S1) 6

X123

C6(S4) 2
C7(P1 × P1) 12
P9 6

X126

C5(P2) 4
C6(P1 × P2) 4
P9 2

X134

C4(P1) 2
C6(P1 × P2) 2
C4(J(∩2

2G(2, 4),P1 × P2)) 2

X135

C4(P1) 2
C6(P1 × P2) 2
C4(J(∩2

2G(2, 4),P1 × P2)) 4

X136
C4(P5) 2
C4(P1 × P4) 2

X146

P9 2
C7(P1 × P1) 4

Continued on next page
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Table 5.4 – Continued from previous page
Fiber Isomorphism class # of this type

C2(∩2
2G(2, 4)) 2

C4(T6) 2
X156 C3(T7) 2

X234
C4(P5) 2
C4(P6) 2

X235

P9 2
C7(P1 × P1) 2
C6(P1 × P2) 4
C5(P2) 4

X236

C7(S1) 2
C6(P1 × P2) 4
P9 2

X246

C6(S1) 2
C7(P1 × P1) 4
C3(T7) 4
P9 2

X256

C6(S1) 2
C7(P1 × P1) 4
C3(T7) 4
P9 2

X345 C3(T7) 2
X346 C3(T7) 2

X356

C4(T6) 4
C7(P1 × P1) 6
P9 2

X456
C2(P3) 4
C8(T8) 2

X1234
P5 2
T9 2

X1235
C2(P3) 2
C1((P2×P2)∩1G(2, 4) (one
variable in common)

2

X1236
C4(P5) 2
C4(T8) 2

X1246

P9 2
C4(P1) 4

Continued on next page
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Table 5.4 – Continued from previous page
Fiber Isomorphism class # of this type

C2(∩2
2G(2, 4)) 2

X1256 Hibi. 1
X1345 T10 See Appendix C. 2
X1346 T10. See Appendix C. 1
X1356 T10. See Appendix C. 2
X1456 P1

⋂
J2(∩2

2G(2, 4)) 2
X2345 Hibi. 1
X2346 Hibi. 1

X2356

P9 2
C4(P1) 4
C2(∩2

2G(2, 4)) 2

X2456
C1(T11) 2
C2(P3) 2

X3456 P1 ∩4 G(2, 4) 2

X13456

P9 2
C4(P1) 4
C2(∩2

2G(2, 4)) 2

Table 5.4: Isomorphism classes of degenerations of the Grassmannian
G(3, 6).

The fibers using the Hibi parameters in Table 5.3. The other components
are described in Table 5.4. The next few pages are explanations on the
notation in the tables.

Explanation: P9

The ideal of a P9 is given by ten variables, with ten variables free. They
come from faces of the complex S ∗∆5.

Explanation: Ci(X)

By Ci(X) we mean the cone over a variety. In equations this means that
there are i free variables. So, for example, consider C7(P1×P1). There are a
total of 20 variables, 4 of them are used in the Segre equation (xixj − xkxl),
there are 7 free variables, so the ideal is generated by 9 variables plus the
Segre equation.
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Explanation: S1

S1 is the join of two disjoint copies of P1 × P1. Recall that the join of
two varieties is the union of lines connecting points from each variety. In
equations it is given by the zero locus of two 2×2-determinants with disjoint
variables.

Explanation: S2

S2 can be described as the zero locus of the 2 × 2-minors of the following
punctured matrix: ∣∣∣∣∣∣

− x3 x4

x9 x12 x10

x16 x7 −

∣∣∣∣∣∣
Notice that S2 is of Hibi type.

Explanation: P1

The two P1’s are the zero locus of the ideal generated by the 2 × 2-minors
of the punctured matrix below.∣∣∣∣∣∣∣∣

− x10 x2

x18 x11 x17

x7 x13 x8

x14 − x5

∣∣∣∣∣∣∣∣
Explanation: P2

The P2’s are zero loci of 2× 2 minors of punctured matrices of the form:∣∣∣∣∣∣
x7 x8 x13

x18 x17 x11

− x2 x10

∣∣∣∣∣∣
Note that this ideal is also of Hibi type.

Explanation: P3

P3 is the zero locus of the 2× 2 minors of the following matrices:∣∣∣∣x19 x14 x5

x16 x18 x17

∣∣∣∣ and
∣∣∣∣x8 x13 x6

x2 x10 x4

∣∣∣∣ .
We see that P3 is the join of two disjoint copies of P1 × P2.
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Explanation: P4

P4 is the zero locus of the 2× 2 minors of the following matrices:∣∣∣∣x19 x14

x16 x18

∣∣∣∣ and ∣∣∣∣x8 x13 x6

x2 x10 x4

∣∣∣∣
Note that P4 is the join of P1 × P1 and P1 × P2. It is also of Hibi type.

Explanation: T1

The ideal T1 is the lattice ideal associated to the lattice in Figure 5.4. Notice
that it is obtained from L3,6 (Figure 5.3) by removing the vertices 9, 16, 3
and 6. See Figure 5.4.

Explanation: T2

T2 is obtained by removing the vertices 10 and 2 instead of 3 and 6 from
L3,6.

Explanation: T3

The ideal of T3 is the lattice ideal obtained from L3,6 by removing the right-
most vertices.

Explanation: T4

The ideal of T4 is the lattice ideal obtained from L3,6 by removing the vertices
2, 3, 8, 12, 7. See figure 5.5. Note that this results in the join of P1 × P1 and
P2 × P2.

Explanation: T5

The ideal of T5 is obtained by removing the vertices 7, 11, 5, 17, 8, 2 from
L3,6. This results in the join of two disjoint copies of P1 × P2. See Figure
5.6.

Explanation: T6

The ideal of T6 is the lattice ideal of the lattice in Figure 5.7.
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Explanation: T7

The ideal of T7 is a lattice ideal, as it is the zero locus of the following
punctured matrix: ∣∣∣∣∣∣∣∣

x1 x16 x17 − −
x14 x7 x2 x4 −
− x19 x5 x11 x10

− − x8 x6 x20

∣∣∣∣∣∣∣∣ .
Explanation: T8

T8 is the join of P1 × P2 and a copy of G(2, 4). Explicitly, its equations are

rank
∣∣∣∣x15 x18 x14

x9 x16 x19

∣∣∣∣ ≤ 1 and x6x10 − x13x4 + x11x20 = 0.

Explanation: T9

T9 is projective variety given by the maximal minors of the matrix below:(
x9 x16 x12 x19 x3 x7

x11 x17 x10 x5 x5 x2

)
The quadrics:

� x4x5 − x11x2 + x10x17.

� x7x9 − x12x16 − x3x19.

� x7x11 − x12x17 − x4x19.

� x2x9 − x12x17 − x4x19.

Explanation: T10

I have not been able to find a reasonable pretty description of this compo-
nent. Therefore I have included its equations in Appendix C. Note that this
component occurs in more than one fiber.

Explanation: T11

This can be described as (P2×P2)∩G(2, 4). In equations, it is given by the
2× 2-minors of the matrix below, plus the quadric x10x6 − x4x13 − x11x20. x9 x16 x19

x15 x18 x14

x11 x17 x5

 .
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Explanation: S3

S3 is the intersection of three not disjoint copies of P1 × P2. Explicitly, it is
given by the 2× 2-minors of the following matrices:

(
x10 x7 x12

x11 x16 x9

)
,

(
x2 x7 x17

x10 x12 x11

)
, and

(
x16 x7 x9

x17 x2 x11

)
.

Explanation: ∩2
2G(2, 4)

This is the intersection of two copies of G(2, 4), along two coordinate axes.
The equations look like, up to renaming of variables:

x1x12 − x9x14 + x15x19

x4x12 − x3x10 + x15x20

Explanation: P5

The ideal of P5 is given by the the 2×2-minors of the following two matrices:(
x3 x11 x15 x9 x4

x7 x5 x14 x19 x2

)
and

(
x5 x10 x2 x4 x11

x19 x12 x7 x3 x9

)
.

Explanation: P6

The ideal of P6 is given by the the 2×2-minors of the following two matrices:(
x4 x11 x17 x10 x5 x2

x3 x9 x16 x12 x19 x7

)
and

(
x7 x4 x3 x2

x19 x11 x9 x5

)
.

Explanation: Jn(X) and J(X,Y )

This is the iterated (disjoint) join of the variety X. This means that if X
are given by f1 = 0, f2 = 0, · · · , fr = 0, then J2(X) is given by the same
equations, but with different variables. Note that with this notation, S1 is
J2(P1 × P1).

Similarly, J(X,Y ) means the disjoint join X and Y .
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5.4 The irreducible fibers

If one uses five of the six deformation parameters, there are six possible
fibers. Five of them are irreducible, and it turns out that of these five there
are two isomorphism classes. These five are X12345, X12346, X12356, X12456

and X23456.
We are able to describe their singular locus.

Theorem 5.4.1. The variety X23456, is irreducible, with singular locus equal
to the union of two copies of C4(P1×P2) and four C1(P1×P2) (both in their
Segre embeddings) .

Proof. ThatX23456 is irreducible, follows since it degenerates toX2345, which
is isomorphic to the Hibi variety, which of course is irreducible.

The rest of the proof will be a description of the strategy used to compute
the result.

The variety is embedded in P19, and so has a natural open affine cover,
obtained by successively setting each variable equal to 1. Being singular is
a local condition, so it is enough to check singularity in each chart.

What we see, is that putting a variable equal to one simplifies the equa-
tions significantly, so that we can use the Jacobian criterium in each chart.
This gives us local equations for the singular locus. We then take the preim-
age of this ideal under the localization map and homogenizes by the variable
we set to 1 (this corresponds to taking the closure). If we do this in each
chart, we will get the whole singular locus.

In some of the charts, the equations didn’t simplify enough. For example,
in the chart U13, the equations were

x11x16 − x9x17 x10x16 − x12x17

x5x16 − x17x19 x11x14 − x5x15

x9x14 − x15x19 x6x14 − x8x15

x5x12 − x10x19 x9x10 − x11x12

x8x9 − x6x19 x5x9 − x11x19

x5x6 − x8x11

x1x8x12 − x1x19x20 − x14x16 + x18x19

x1x6x12 − x1x9x20 − x15x16 + x9x18

x1x8x10 − x1x5x20 − x14x17 + x5x18

x1x6x10 − x1x11x20 − x15x17 + x11x18

These were too complicated for Macaulay2 to compute directly. We first
computed the Jacobian matrix (this is not a computation heavy operation).
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Since we knew by previous computations that some charts were non-singular,
we could substitute these variables by zero. After having deleted some rows
and columns with only zeros, we are left with a 13× 14-matrix.

To find the singular locus, we must calculate all its 6 × 6-minors (this
is because the ambient space, after having deleted unused variables is 15-
dimensional). This computation takes about 5 hours on a computer, and
we get a list of 590592 non-zero minors. Amazingly, Macaulay2 is able to
perform a mingens operation, so we find that the ideal is minimally generated
by 2762 elements. To compute the radical of this ideal, we take the radical
of the ideal generated by the first 100 elements, and so on. We finally sum
all these radical ideas, take the radical again, and we end up with local
equations for the singular locus in the chart U13.

These can be pulled back and homogenized, and they are isomorphic to
C1(P1 × P1). It turns out that the two copies of C1(P1 × P1) are isomorphic
via the isomorphism of P19 that mirrors the lattice of G(3, 6) vertically.

Theorem 5.4.2. The variety X12345 has as singular locus two components
isomorphic to C2((P2 × P2)), thus of dimension 4 + 2 = 6. They intersect
along x1 = x20 = 0.

Proof. This is proved in exactly the same way as the previous theorem,
except that the computations are easier. One checks on each chart locally,
homogenizes, et cetera. The computations are made easier by using the
isomorphism of the fibers coming from turning the lattice of G(3, 6) upside
down.

Finally, we have that these two fibers are the only isomorphism classes
of irreducible fibers using five deformation parameters:

Theorem 5.4.3. There are isomorphisms X12345 ' X12346 ' X12356, and
an isomorphism X12456 ' X23456.

Proof. The isomorphism comes from a permutation of the variables in P19

preserving the ideals. The strategy was to write up the binomial equations
in each ideal and guess an isomorphism.

During the computations we found many isomorphisms P19 → P19 over
order two, inducing isomorphisms on fibers. Many of them came from reflec-
tions of the lattice L3,6, and many didn’t. This last fact may indicate the
existence of an involution X → X . I have however not been able to find it.
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20

4

6 10

3 13 2

12 11 8

15 7 17

9 18 5

16 14

19

1

Figure 5.3: The distributive lattice L3,6, renamed.
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20

4

10

13 2

12 11 2

15 7 17

18 5

14

19

1

Figure 5.4: The distributive lattice of T1.
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20
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9 18 5

16 14

19

1

Figure 5.5: The distributive lattice of T4.
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20
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6 10
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16 14

19

1

Figure 5.6: The distributive lattice of T5.
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13

12 6

3

15 7

14 16

1

Figure 5.7: The distributive lattice of T6.



Appendix A

Decomposition techniques

We will briefly describe the techniques used to decompose the various types
of ideals encountered during our computations.

A.1 Binomial ideals

If the ideal is binomial (in a general sense: we also call monomial ideals for
binomial), there is an extremely efficient algorithm by Eisenbud-Sturmfels,
as described in [ES96]. This algorithm is implemented in Macaulay2.

A.2 Colon-ideals

If one of the minimal generators of an ideal factors, then the ideal is not
prime. A very useful technique relies on the following (easily proven) lemma:

Lemma A.2.1. If (I : f∞) = (I : fk), then I = (I : f∞) ∩ (J, fk).

Proof. See [DE05, Chapter 5].

If we know that the ideal I is Cohen-Macaulay, then it is equidimensional.
This, combined with good choices of splitting polynomials for I, gives an
effective algorithm for decomposing I provied each step succeeds: 1) Look for
splitting polynomials. 2) Compute (I : f∞), (I : fk) and (I, fk). Repeate.
The process eventually stops.

A polynomial f satisfying the condition in the lemma is called a splitting
polynomial. In all the reducible ideals we encountered, it was easy to guess a
splitting polynomial because it occured among the generators of the ideal. In
general it is a hard problem to find splitting polynomials of reducible ideals.

61
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A.3 Brute force with Macaulay2

This is only feasible if the ideal contains lot of monomials or has few gener-
ators, in which case the algorithm of Macaulay2 fast enough.

If one cannot find a splitting polynomial and the ideal has many gener-
ators, it is generally not feasible to decompose it using Macaulay2. One has
to either guess a splitting polynomial, or use other information about the
ideal. If for example one knows that the ideal degenerates to a prime ideal,
then it follows immedietaly that the ideal was prime, since the number of
components is upper semicontinous.



Appendix B

Computer code

A lot of experimentation and exploration has been done with the help of
the computer algebra system Macaulay2 [GS]. Here we include some of the
relevant computer code.

B.1 T 1
A and T 2

A

The following code can be used to compute a basis for T 1(A,A/k) in degree
n. P is a polynomial ring and I as an ideal such that A = P/I.

C = res(I, LengthLimit => 2);
A = P/I
N = Hom(image C.dd_1, A)
dI = sub(transpose jacobian C.dd_1,A)
T1 = N/image dI
B = matrix basis(n,T1)
T1Mat = (gens N) * B

The following code generates a basis for T 2(A,A/k) in degree n.

C = res(I, LengthLimit => 2);
Rel0 = koszul(2, C.dd_1);
A = P/I;
HomR = Hom(image(C.dd_2)/image Rel0**A, A);
Triv = image substitute(transpose C.dd_2, A);
T2 = HomR/Triv;
B = matrix basis(n, T2);
T2Mat = (gens HomR) * B

63
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The output is a matrix. Each column in the matrix represents a homo-
morphism R→ A, where R is the module of relations of I.

Remark. The package VersalDeformation written by Nathan Ilten has im-
plemented methods to compute the T i modules in any degree. The notation
is CT^i(n,F) for i = 1, 2 and n an integer. F is the matrix of generators of
the ideal, obtained simply as gens I.

B.2 Finding the flat family

The package VersalDeformations [Ilt11] can compute versal deformation
spaces, though this is often impossible due to limited computer power. It was
however possible in our case, where we didn’t use all deformation parameters.
Below is the code used to construct the family T ′ of Chapter 5.

F0 = gens I;
R0 = syz F0;
F1 = firstOrderDefMatrix(F0,Ts | Us, LoL | LoLU)
R1 = (-F1*R0) // F0;
T2 = cotanComplexTwo(0,F0);
C = {sub(T2, ring F0),0};
G = {}
(F,R,G,C)=liftDeformation({F0,F1},{R0,R1},G,C);
(F,R,G,C)=liftDeformation(F,R,G,C);
(F,R,G,C)=liftDeformation(F,R,G,C);
(F,R,G,C)=liftDeformation(F,R,G,C);
(F,R,G,C)=liftDeformation(F,R,G,C);
(F,R,G,C)=liftDeformation(F,R,G,C);
(F,R,G,C)=liftDeformation(F,R,G,C);

F1 is a matrix of first order deformations. The lifting procedure ends.
The output (F,R,G,C) is the data of a deformation family. The equations
for the family are obtained as sum F, and the equations of the base space are
obtained as sum G. The family satisfies

transpose ( (sum F)*(sum R))+(sum C)*sum(G)==0

B.3 Presentations of toric ideals

A binomial prime ideal expresses the relation between points of a polytope
that is the convex hull of the columns of a matrix M . It is well known how
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to obtain this matrix from the presentation of the ideal, but we include our
implementation here for completeness:

makeCone = method()
makeCone(Ideal) := (I) -> (

mGens := mingens I;
M := {};
lll := {};
for j from 0 to (numColumns(mGens)-1) do (

lll = exponents (mGens)_j_0;
if (length lll == 1) then (

M = M | {lll#0};
)

else if (length lll == 2) then (
M = M | {(lll#0-lll#1)};
)
);

B := transpose matrix M;
transpose LLL syz matrix transpose B
)

The result is a Macaulay2 method that takes a binomial ideal as input and
outputs a matrix.
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Appendix C

Equations

C.1 The family X → T̃
The family X → T̃ has the set of 35 equations presented in Figure C.2. The
parameters can be sorted into 6 orbits. Orbit 1 consists of the parameters
{s63, s66, s68, s70}. Orbit 2 consists of the parameters {s65, s74, s77, s82}. Or-
bit 3 consists of the parameters {s73, s76, s79, s81}. Orbit 4 consists of the pa-
rameters {u8, u12, u15, u17}. Orbit 5 consists of the parameters {u2, u3, u9, u5}.
Orbit 6 consists of the parameters {x11, x7}.

C.2 The base space T
The equations for T ⊂ A22:

u15u9 − u17u5 s82u9 − s77u5

u8u2 − u12u3 s74u2 − s65u3

s77u15 − s82u17 s65u8 − s74u12

s82s76 − s74s81 s66s76 − s68s81

s77s73 − s65s79 s63s73 − s70s79

s66s74 − s68s82 s63s65 − s70s77

s66s70u3u9 − s63s68u2u5 s76s79u12u15 − s73s81u8u17

67
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The equations for the 14-dimensional component:

u15u9 − u17u5 s82u9 − s77u5 u8u2 − u12u3

s74u2 − s65u3 s77u15 − s82u17 s65u8 − s74u12

s82s76 − s74s81 s66s76 − s68s81 s77s73 − s65s79

s63s73 − s70s79 s66s74 − s68s82 s63s65 − s70s77

s73s81u3u9 − s76s79u2u5 s70s81u3u9 − s63s76u2u5 s66s73u3u9 − s68s79u2u5

s66s70u3u9 − s63s68u2u5 s73s81u8u9 − s76s79u12u5 s70s81u8u9 − s63s76u12u5

s66s73u8u9 − s68s79u12u5 s66s70u8u9 − s63s68u12u5 s76s79u15u2 − s73s81u17u3

s68s79u15u2 − s66s73u17u3 s63s76u15u2 − s70s81u17u3 s63s68u15u2 − s66s70u17u3

s76s79u12u15 − s73s81u8u17 s68s79u12u15 − s66s73u8u17 s63s76u12u15 − s70s81u8u17

s63s68u12u15 − s66s70u8u17

C.3 The invariant family X → T G

The equations are included in Figure C.1. The variables {s1, · · · , s6} corre-
spond to the orbits, in the same order as listed above.

C.4 The equatorial sphere ∆eq

The equatorial sphere is a simplicial complex on the vertex set

{2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17}.

The rank-constant elements of L3,6 correspond to the remaining vertices,
namely {1, 4, 18, 19, 20}. The maximal faces of the sphere ∆eq are those in
the table below:

(14, 5, 8, 2) (5, 17, 8, 2) (14, 5, 2, 10) (5, 17, 2, 10) (14, 7, 8, 2) (16, 7, 8, 2)
(14, 7, 2, 10) (16, 7, 2, 10) (16, 17, 8, 2) (16, 17, 2, 10) (14, 7, 3, 6) (16, 7, 3, 6)
(9, 15, 3, 6) (16, 9, 3, 6) (14, 15, 3, 6) (14, 7, 12, 3) (16, 7, 12, 3) (9, 15, 12, 3)
(16, 9, 12, 3) (14, 15, 12, 3) (14, 5, 8, 6) (5, 17, 8, 6) (14, 5, 11, 6) (5, 17, 11, 6)
(14, 5, 11, 10) (5, 17, 11, 10) (14, 7, 8, 6) (16, 7, 8, 6) (16, 17, 8, 6) (9, 15, 11, 6)
(16, 9, 11, 6) (14, 15, 11, 6) (16, 17, 11, 6) (14, 7, 12, 10) (16, 7, 12, 10) (9, 15, 11, 10)
(16, 9, 11, 10) (9, 15, 12, 10) (16, 9, 12, 10) (14, 15, 11, 10) (16, 17, 11, 10) (14, 15, 12, 10)
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C.5 Indescribable equations

C.5.1 X1345

The fiber X1345 has two components. One of them is described by the equa-
tions below. The equations of the other component is obtained by a permu-
tation of the coordinate functions of P19.

x12 x9 x3 x15

x2x16 − x7x17 x8x10 − x5x20 x6x10 − x11x20 x5x7 − x8x14 − x2x19

x1x7 − x14x16 x5x6 − x8x11 x1x2 − x14x17 x2x6 − x4x8 − x17x20

x1x8 − x5x16 + x17x19 x2x6 − x4x8 − x17x20 x4x5 − x2x11 + x10x17

x7x11 − x6x14 − x10x16 − x4x19 + x1x20
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x18x20s
2
1s2s5s6 − x4x7s2s4 + x2x3 x1x20s

2
1s2s3s

2
6 − x4x19s2s3s

2
4 − x6x14s1s2 + x3x5

x18x20s
2
1s2s5s6 − x4x7s2s4 + x2x3 x1x20s

2
1s2s3s

2
6 − x4x19s2s3s

2
4 − x6x14s1s2 + x3x5

−x17x20s1s6 + x4x8s4 + x2x6 −x2x19s3s4 + x8x14s1 + x5x7

x16x20s1s2s3s6 + x6x7s2 + x3x8 x1x20s
2
1s2s3s

2
6 − x4x19s2s3s

2
4 − x10x16s1s2 + x2x9

x1x13s
2
1s2s5s6 − x11x19s2s4 + x5x9 −x3x19s3s4 + x12x16s1 + x7x9

x6x19s2s3s4 + x13x16s1s2s5 + x8x9 −x15x20s1s6 + x4x12s4 + x3x10

−x4x13s4s5 + x11x20s6 + x6x10 −x5x20s3s6 + x2x13s5 + x8x10

−x4x5s3s4 + x10x17s1 + x2x11 −x4x9s3s4 + x6x15s1 + x3x11

−x13x17s1s5 + x5x6s3 + x8x11 x14x20s1s2s3s6 + x7x10s2 + x2x12

x10x19s2s3s4 + x13x14s1s2s5 + x5x12 −x9x20s3s6 + x3x13s5 + x6x12

x19x20s2s
2
3s4s6 − x7x13s2s5 + x8x12 −x13x15s1s5 + x9x10s3 + x11x12

−x1x12s1s6 + x15x19s4 + x9x14 x4x14s2s3s4 + x10x18s1s2s5 + x2x15

x1x10s1s2s3s6 + x11x14s2 + x5x15 −x12x18s1s5 + x3x14s3 + x7x15

−x1x8s1s6 + x17x19s4 + x5x16 −x18x19s4s5 + x1x7s6 + x14x16

−x1x3s3s6 + x9x18s5 + x15x16 x4x16s2s3s4 + x6x18s1s2s5 + x3x17

−x8x18s1s5 + x2x16s3 + x7x17 x1x6s1s2s3s6 + x11x16s2 + x9x17

−x1x2s3s6 + x5x18s5 + x14x17 x1x4s2s
2
3s4s6 − x11x18s2s5 + x15x17

x1x20s
2
1s

2
3s

2
6 − x4x19s

2
3s

2
4 − x13x18s

2
1s

2
5 − x6x14s1s3 − x10x16s1s3 + x7x11

x1x20s1s2s
2
3s

2
6 − x13x18s1s2s

2
5 − x6x14s2s3 + x8x15

x1x20s1s2s
2
3s

2
6 − x13x18s1s2s

2
5 − x10x16s2s3 + x12x17

Figure C.1: Equations for the invariant family X → T G .
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x2x3 − x4x7s65u8 + x18x20s68s70s77u5u11 x2x6 + x4x8u8 − x17x20s68u11

x5x7 + x8x14s63 − x2x19s81u17 x6x7s65 + x3x8 + x16x20s68s65s81u11

x5x9 + x1x13s66s70s77u3u7 − x11x19s77u15 x7x9 + x12x16s66 − x3x19s79u15

x8x9 + x13x16s66s65u3 + x6x19s82s73u17 x3x10 + x4x12u12 − x15x20s70u11

x6x10 − x4x13u12u3 + x11x20u11 x8x10 + x2x13u2 − x5x20s73u11

−x4x5s73u8 + x2x11 + x10x17s68 −x4x9s76u12 + x3x11 + x6x15s70

x5x6s73 + x8x11 − x13x17s68u2 x7x10s74 + x2x12 + x14x20s70s74s79u11

x5x12 + x13x14s70s77u3 + x10x19s74s81u17 x6x12 + x3x13u3 − x9x20s76u11

x8x12 − x7x13s74u2 + x19x20s74s73s81u17u11 x9x10s76 + x11x12 − x13x15s70u3

−x1x12s66u7 + x9x14 + x15x19u15 x4x14s74s79u12 + x2x15 + x10x18s68s77u5

x1x10s68s77s81u7 + x11x14s77 + x5x15 x3x14s79 + x7x15 − x12x18s66u9

−x1x8s63u7 + x5x16 + x17x19u17 x1x7u7 + x14x16 − x18x19u17u5

−x1x3s79u7 + x15x16 + x9x18u9 x4x16s74s81u12 + x3x17 + x6x18s70s77u5

x2x16s81 + x7x17 − x8x18s63u5 x1x6s70s82s79u7 + x11x16s82 + x9x17

−x1x2s81u7 + x14x17 + x5x18u5 x1x4s74s79s81u12u7 + x15x17 − x11x18s77u5

x3x5 − x6x14s63s65 − x4x19s74s81u12u17 + x1x20s68s70s77s81u11u7

x2x9 − x10x16s66s74 − x4x19s82s73u8u17 + x1x20s68s70s82s79u11u7

x7x11 − x6x14s63s73 − x10x16s68s81 − x13x18s63s68u2u5 − x4x19s73s81u8u17

+x1x20s68s70s79s81u11u7

−x6x14s65s79 + x8x15 − x13x18s68s77u2u5 + x1x20s68s65s79s81u11u7

−x10x16s74s81 + x12x17 − x13x18s70s77u3u5 + x1x20s70s74s79s81u11u7

Figure C.2: The equations of the family X → T ′.



72 APPENDIX C. EQUATIONS



Bibliography

[AC04] Klaus Altmann and Jan Arthur Christophersen, Cotangent coho-
mology of Stanley-Reisner rings, Manuscripta Math. 115 (2004),
no. 3, 361–378. MR 2102057 (2005j:13020)

[AC10] , Deforming Stanley-Reisner schemes, Math. Ann. 348
(2010), no. 3, 513–537. MR 2677892 (2011i:14017)

[Bir37] Garrett Birkhoff, Rings of sets, Duke Math. J. 3 (1937), no. 3,
443–454. MR 1546000

[Cho49] Wei-Liang Chow, On the geometry of algebraic homogeneous
spaces, Ann. of Math. (2) 50 (1949), 32–67. MR 0028057 (10,396d)

[CHT06] Aldo Conca, Serkan Hoşten, and Rekha R. Thomas, Nice initial
complexes of some classical ideals, Algebraic and geometric combi-
natorics, Contemp. Math., vol. 423, Amer. Math. Soc., Providence,
RI, 2006, pp. 11–42. MR 2298753 (2008h:13035)

[CI11] J. A. Christophersen and N. O. Ilten, Degenerations to Unob-
structed Fano Stanley-Reisner Schemes, ArXiv e-prints (2011).

[Cow89] Michael J. Cowen, Automorphisms of Grassmannians, Proc. Amer.
Math. Soc. 106 (1989), no. 1, 99–106. MR 938909 (89k:14089)

[DE05] Alicia Dickenstein and Ioannis Z. Emiris (eds.), Solving polynomial
equations, Algorithms and Computation in Mathematics, vol. 14,
Springer-Verlag, Berlin, 2005, Foundations, algorithms, and appli-
cations. MR 2161984 (2008d:14095)

[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Math-
ematics, vol. 150, Springer-Verlag, New York, 1995, With a view
toward algebraic geometry. MR 1322960 (97a:13001)

73



74 BIBLIOGRAPHY

[ES96] David Eisenbud and Bernd Sturmfels, Binomial ideals, Duke Math.
J. 84 (1996), no. 1, 1–45. MR 1394747 (97d:13031)

[Ful93] William Fulton, Introduction to toric varieties, Annals of Mathe-
matics Studies, vol. 131, Princeton University Press, Princeton,
NJ, 1993, The William H. Roever Lectures in Geometry. MR
1234037 (94g:14028)

[Ful97] , Young tableaux, London Mathematical Society Student
Texts, vol. 35, Cambridge University Press, Cambridge, 1997, With
applications to representation theory and geometry. MR 1464693
(99f:05119)

[GS] Daniel R. Grayson and Michael E. Stillman, Macaulay2, a soft-
ware system for research in algebraic geometry, Available at
http://www.math.uiuc.edu/Macaulay2/.

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York,
1977, Graduate Texts in Mathematics, No. 52. MR 0463157 (57
#3116)

[Har95] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics,
vol. 133, Springer-Verlag, New York, 1995, A first course, Cor-
rected reprint of the 1992 original. MR 1416564 (97e:14001)

[Har10] Robin Hartshorne, Deformation theory, Graduate Texts in Math-
ematics, vol. 257, Springer, New York, 2010. MR 2583634
(2011c:14023)

[Hib87] Takayuki Hibi, Distributive lattices, affine semigroup rings and al-
gebras with straightening laws, Commutative algebra and combi-
natorics (Kyoto, 1985), Adv. Stud. Pure Math., vol. 11, North-
Holland, Amsterdam, 1987, pp. 93–109. MR 951198 (90b:13024)

[Hud69] J. F. P. Hudson, Piecewise linear topology, University of Chicago
Lecture Notes prepared with the assistance of J. L. Shaneson and
J. Lees, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR
0248844 (40 #2094)

[Ilt11] N. O. Ilten, VersalDeformations - a package for computing versal
deformations and local Hilbert schemes, preprint (2011), 1–5.

[KL72] S. L. Kleiman and Dan Laksov, Schubert calculus, Amer. Math.
Monthly 79 (1972), 1061–1082. MR 0323796 (48 #2152)

http://www.math.uiuc.edu/Macaulay2/


BIBLIOGRAPHY 75

[MS05] Ezra Miller and Bernd Sturmfels, Combinatorial commutative al-
gebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag,
New York, 2005. MR 2110098 (2006d:13001)

[RW05] Victor Reiner and Volkmar Welker, On the Charney-Davis and
Neggers-Stanley conjectures, J. Combin. Theory Ser. A 109 (2005),
no. 2, 247–280. MR 2121026 (2006e:06003)

[S+12] W.A. Stein et al., Sage Mathematics Software (Version 4.8), The
Sage Development Team, 2012, http://www.sagemath.org.

[Ser06] Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006.
MR 2247603 (2008e:14011)

[Sta96] Richard P. Stanley, Combinatorics and commutative algebra, sec-
ond ed., Progress in Mathematics, vol. 41, Birkhäuser Boston Inc.,
Boston, MA, 1996. MR 1453579 (98h:05001)

[Stu93] Bernd Sturmfels, Algorithms in invariant theory, Texts and Mono-
graphs in Symbolic Computation, Springer-Verlag, Vienna, 1993.
MR 1255980 (94m:13004)

[Stu96] , Gröbner bases and convex polytopes, University Lecture
Series, vol. 8, American Mathematical Society, Providence, RI,
1996. MR 1363949 (97b:13034)


	Preliminaries
	Some order theory
	Simplicial complexes and Stanley-Reisner rings
	Initial ideals and Gröbner bases
	Toric ideals and triangulations
	SAGBI bases

	The Grassmannian
	Definition
	Projective structure
	Automorphism group
	Automorphisms coming from the lattice Ld,2d

	Deformation theory
	Deformation theory
	The Ti-functors
	Obstruction calculus
	Deformation theory of Stanley-Reisner schemes

	Degenerations of G(d,n)
	The Hibi ring
	The equatorial sphere
	The degenerations of G(d,n)

	Degeneration of G(3,6)
	The equatorial sphere
	Calculation of TiAS  i=1,2
	Construction of the EHG family
	The irreducible fibers

	Decomposition techniques
	Binomial ideals
	Colon-ideals
	Brute force with Macaulay2

	Computer code
	T1 and T2
	Finding the flat family
	Presentations of toric ideals

	Equations
	The family X 
	The base space T
	The invariant family X TG
	The equatorial sphere eq
	Indescribable equations


