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1 Introduction; topological manifolds

Manifolds are geometric objects that locally look like some Rn for some
natural number n. In that respect, they are very easy to understand. The
interesting things happen when we glue several pieces of Rn together.

In Calculus, manifolds (in those rare occasions they were encountered)
usually appeared embedded in some larger Rn or Cn. This is not the path
we’re going to take - for us, manifolds will be objects in their own right,
existing independently of some “ambient” space. The way to do this is,
exactly, glueing.

We start with the definition of a topological manifold.

Definition 1.1 (Intuitive definition). A topological manifold M is a topo-
logical space such that each x ∈ M has a neighbourhood U such that U is
homeomorphic to Rn. �

Here are some examples of manifolds.

Example 1.2. Setting M = Rn, set U = Rn for all x ∈M . F

Example 1.3. Any open ball B in Rn: If x ∈ B, let U = B. Then I claim
that U ≈ Rn: just use the map ~x 7→ 1

1−|~x|~x. F

Example 1.4. By the previous example, it follows that any open U ⊆ Rn
is a manifold, by definition of an open set as a union of balls. F

Example 1.5. Similarly, any open subset of a manifold is a manifold. F
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Example 1.6. Up to homeomorphism, there are only two 1-dimensional
manifolds. Namely, the circle S1 and the real line R. The first is compact,
the other is not. F

Example 1.7. By stereographic projection, every n-sphere can be covered
by two sheets homeomorphic to Rn. See Figure 1. F

Figure 1: Stereographic projection.

Example 1.8. The ℵ0 number of compact surfaces. These are 2-spheres
attached with n handles, for some natural number n. F

Example 1.9. The non-orientable manifolds. An example of a non-orientable
manifold is the Möbius band in Figure 2 with the boundary removed. If we
keep the boundary, the figure is an example of a manifold with boundary.

F

Example 1.10. The last example (for now) is the projective plane over the
reals, called P2

R. By definition, as a set, it is the set of lines through the
origin in R3. However, it has a nice manifold structure. First, note that a
line through the origin in R3 is determined by giving a point on the 2-sphere
S2. This point is however not unique: the antipodal point gives the same
line. This means that we can identify P2

R with thw quotient space S2/ ∼
where x ∼ −x. We now give the quotient the quotient topology.

This is not completely enlightening though. There is no obvious local
homeomorphisms with R2, nor do we really have a picture of how P2

R looks
like. The second problem can be solved like this: Note that any line not in
the plane z = 0, has a unique representative in the open north hemisphere.
Similarly, every line in the plane z = 0, but with y 6= 0, has a unique
representative on the equator minus a point. Thus P2

R can be written as
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Figure 2: The Möbius band.

the union of a three cells, namely a B2 (a 2-ball), a B1 and a B0. So
P2
R = B2 ∪B1 ∪B0, but glued in a special way. We can think of this glueing

as “adding points/lines at infinity”.
There is a natural choice of coordinates on P2

R. We define homogeneous
coordinates: a point P can be represented by a 3-tuple [x0 : x1 : x2], and
this tuple is unique up to multiplication by R\{0}. In other words, every
point has a representative of the form [x0 : x1 : x2], where [x0 : x1 : x2] =
[λx0 : λx1 : λx2]. Define the “basic open sets Ui” as Ui := {P ∈ P2

R |xi 6= 0}.
There is a natural bijection between U0, say, and R2. In U0, every point has
a unique representative of the form [1 : x1 : x2], and this can be mapped to
(x1, x2) ∈ R2. Now it is an exercise to show that the set Ui is open in the
quotient topology.

It is easy to see that the Ui cover P2
R, and so this defined the structure

of a topological manifold on P2
R. F

Figure 3: The connected sum of two tori.
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Example 1.11. One can make new manifolds from old ones by means of
the connected sum.

One starts with two manifolds M and N , removes an open disk from
both of them. The boundary of a disk is a S1, and we can identify the two
boundaries by an arbitrary homeomorphism ϕ : S1 → S1. We glue to get
M#N . See Figure 3. F

For the Möbius band example to be a manifold, we have to define a
manifold with boundary:

Definition 1.12. LetM be a topological space. We say thatM is amanifold
with boundary if every point of x has a neighbourhood homeomorphic to
either Rn or Hn := {(x1, . . . , xn) : xn ≥ 0}, the upper half-plane. �

We call the n in the definition the dimension of the manifold. However, to
prove that the dimension is well-defined, reduces to proving that if Rn ≈ Rm,
then m = n. This is a very non-trivial problem, best proved with tools
from algebraic topology, using such tools as homology groups and long exact
sequences.

Proof of invariance of domain. Let us pretend we know the machinery of
singular homology. Then the proof of invariance of domain go like this: Sup-
pose we have two non-empty open sets U ⊂ Rn and V ⊂ Rm and a home-
omorphism U ≈ V . Suppose x ∈ U . By excision, we have Hk(U,U\{x}) ≈
Hk(Rn,Rn\{x}). By the long exact sequence for the pair (Rn,Rn\{x}), we
get Hk(Rn,Rn\{x}) ≈ H̃k−1(Rn\{x}). But this latter space deformation re-
tracts onto Sm−1, so we conclude that Hk(U,U\{x}) 6= 0 if and only if k = n
or k = 0. But since homeomorphisms induce isomorphisms on homology, we
must have k = m as well.

1.1 Problems with the naïve definition

Requiring just that a topological manifold M is locally Euclidean is not
enough. For example, this does not guarantuee that it is Hausdorff, as being
Hausdorff is not a local property. For example, consider the line with two
origins:

Example 1.13 (Line with two origins). Start with two copies of the real line
X1 = R and X2 = R. Let U, V be the subsets R\{0} of X1, X2, respectively.
Glue them together with the identity map and let X be the quotient space.
Then obviously every point x ∈ X\{0} has a neighbourhood homeomorphic
to an interval in R, by construction. But notice that X has two points that
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we want to call 0, one for each copy of R. So let us call them 0 and 0′. Both
0 and 0′ have neighbourhoods homeomorphic to an interval in R.

But it is not Hausdorff. Every neighbourhood of 0 intersects every neigh-
bourhood of 0′.1 F

Thus, we want to demand also that M is Hausdorff. But this is not
enough to get a good theory. We also want to demand thatM is paracompact,
meaning that every open cover has an open refinement that is locally finite.

A counterexample is given by the long line L. It is constructed by glueing
together uncountably many intervals [0, 1) along their endpoints. Thus L is
Hausdorff and locally Euclidean. It can however be shown that L is not
paracompact.

Thus we arrive at our more technical definition of a topological manifold:

Definition 1.14. A topological manifold is a topological space M such that
every x ∈ M has a neighbourhood homeomorphic to an open set in Rn for
some n, and such that M is Hausdorff and paracompact. �

In fact, we have the following theorem from point set topology:

Theorem 1.15. Let X be a paracompact Hausdorff space. Let {Uα}α∈J be
an open cover of X. Then there exists a partition of unity on X subordinate
to {Uα}α∈J .

For a proof, see Munkres, page 259.

1Almost exactly the same construction is used as the prime example of a non-separated
scheme in algebraic geometry.
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2 Differentiable manifolds

We add more structure to M , thereby defining the notion of a differentiable
manifold.

Given two open subsets U, V ofM and homeomorphisms x : U → x(U) ⊆
Rn and y : V → y(V ) ⊆ Rn, one has transition maps on the intersection
U ∩ V :

U ∩ V

x

��

y // y(U ∩ V ) ⊆ Rn

Rn ⊇ x(U ∩ V )
x◦y−1

55

We say that the two charts (x, U) and (y, V ) are C∞-related if the map
x ◦ y−1 and the map y ◦ x−1 are C∞-maps as maps between subsets of Rn.

Furthermore, we say that a set of charts {(xi, Ui)}i∈I is an C∞-atlas for
M if all the xi, xj are C∞-related and the union

⋃
i Ui cover M .

Here a uniqueness result:

Lemma 2.1. Given an atlas A on M , there exists a unique maximal atlas
A ′ containing A .

Proof. Define A to be the set of all charts y which are C∞-related to all
charts x ∈ A. Then A contains two types of charts: those who belonged to
A , and possibly new ones. Every two charts in A are C∞-related, by defi-
nition of atlas, and every pair with one in each are C∞-related by definition
of A ′. Further, every pair of charts with both in A ′ are C∞-related: one
can intersect their domains with a chart in A , compose, and conclude.

Clearly A ′ is the unique maximal atlas containing A .

Thus:

Definition 2.2. A differentiable manifold is a pair (M,A ), where M is a
topological manifold, and A is a maximal atlas (of C∞-related transition
functions). �

From now on, when we say “manifold”, we will always mean “differen-
tiable manifold”. Note that it is defined as a pair, and we cannot forget the
atlas, because there are, famously, homeomorphic topological manifolds with
different differentiable structures (for example, Milnor’s “exotic spheres”, the
first one being the 28 different differentiable structures on S7).

Here’s an example (and probably the only explicit calculation we will do
in the course):
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Example 2.3. Recall that S2 (the zero set of the equation x21+x22+x23 = 1 in
R3) can be covered by two charts, by stereographic projection (see Figure 1),
by first projecting from the north pole, and then from the south pole. Call
these maps ϕ and ψ, respectively. We are going to compute the transition
maps, to verify that this atlas is actually a C∞-atlas.

We need to find explicit formulae for ϕ and ψ. The first map has domain
S2\{N} and image R2. But we want to compute ψ ◦ϕ−1, so we start with a
point (a, b) in the plane R2 (embedded in R3 by z = 0). We want to connect
it with the north pole (0, 0, 1) by a line, and compute its intersection with
the 2-sphere. The line is given parametrically as

t(a, b, 0) + (1− t)(0, 0, 1) = (at, bt, 1− t).

To find the intersection with the sphere, we must compute when the right
hand side has norm 1:

a2t2 + b2t2 + 1− 2t+ t2 = 1

Getting rid of the 1 and cancelling the t, we end up with the condition

t =
2

1 + ‖a‖
,

where ‖a‖ =
√
a2 + b2. In other words, explicitly, we have

ϕ−1(a, b) =

(
2a

1 + ‖a‖
,

2b

1 + ‖a‖
,
‖a‖ − 1

1 + ‖a‖

)
.

To compute ψ, one start with a point on the sphere, and find a formula
for the the intersection with the x, y-plane. So let (x, y, z) be on the sphere.
Then ψ(x, y, z) is on the line from S (the south pole) to the plane z = 0.
This line is parametrically given by

t(x, y, z) + (1− t)(0, 0,−1) = (tx, ty, tz − 1 + t).

The z-coordinate is zero when t = 1
z+1 . Thus

ψ(x, y, z) =

(
x

z + 1
,

y

z + 1

)
Finally, we can compute the composition ψ ◦ ϕ−1:
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ψ ◦ ϕ−1(a, b) = ψ

(
2a

1 + ‖a‖
,

2b

1 + ‖a‖
,
‖a‖ − 1

1 + ‖a‖

)
=

(
2a

1 + ‖a‖
/ 2‖a‖

1 + ‖a‖
,

2b

1 + ‖a‖
/ 2‖a‖

1 + ‖a‖

)
=

(
a

‖a‖
,
b

‖a‖

)
.

So the transition maps are just inversion about the origin in the (a, b)-
plane (with the origin removed). These are clearly C∞ functions. F

The moral of the story is that we could just as well defined S2 as two
copies of R2\{0} glued together with the inversion map, because that’s ex-
actly how the differentiable structure is defined, and that is all we care about.

Here’s another example:

Example 2.4. Recall that we could write the projective plane P2
R as the

union of three open sets Ui, defined by the non-vanishing of one of the
homogeneous coordinates. Here one computes (easily) that the transition
maps ϕ1 ◦ ϕ−10 : R2

(a,b)\{a = 0} → R2
(a,b)\{a = 0} are given by

(a, b) 7→
(

1

a
,
b

a

)
.

F

It is time to define maps between them.

Definition 2.5. LetMn, Nm be manifolds (of dimension n,m, respectively),
and let f : M → N be a continous map between them. We say that f is
differentiable at p if for all charts (x, U) with p ∈ U and for all charts (y, V )
with f(p) ∈ V , the function y ◦ f

∣∣
U
◦ x−1 is differentiable (as a function

between open subsets of Rn and Rm).

U
f|U // V

y

!!
x(U)

x−1

==

y◦f◦x−1
// y(V )

If f is differentiable at all points p ∈M , then we say that f is differentiable.
�
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Thus we have a category Diff of differentiable manifolds. Its objects are
differentiable manifolds and the maps are differentiable maps. This gives
us at once the notion of an isomorphism of manifolds: it is just a pair of
differentiable maps that compose to the identity in each direction.

We want to define some properties of maps in Diff. To start off, we
introduce some notation. Let f : Rn → R be differentiable map, then we
define

Di(f)(a) = lim
h→0

f(a1, . . . , ai + h, . . . , an)

h
.

This is nothing but the i’th partial derivative. The reason we’re not
using the usual Leibniz notation is because we want to reserve it for later
use. Having established the Di notation, one recalls the chain rule: Given
two maps g : Rm → Rn and f : Rn → R, the Dj of the composite is given
as:

Dj(f ◦ g)(a) =

n∑
i=1

Di (f ◦ g) (f(g(a))) ·Dj(g
i)(a).

The classical Leibniz notation will be reserved for tangent vectors on
manifolds. So let f : M → R be a map from a manifold to the real line, and
let (x, U) be a chart, and let p ∈ U . Then we define

∂f

∂xi
(p) =

∂f

∂xi

∣∣∣∣
p

:= Di(f ◦ x−1)(x(p))

Thus ∂f
∂xi

∣∣∣
p
measures the rate of change of the function f : M → R with

respect to the coordinate system (x, U).
Thus we may ask: what happens if we change charts?

Proposition 2.6. Let f : M → R be a map and let (x, U), (y, V ) be two
overlapping coordinate charts. Then

∂f

∂yi
=

n∑
j=1

∂f

∂xj
∂xj

∂yi
.

Or in matrix notation:[
∂f
∂yi

]
i=1...n

=
[
∂xj

∂yi

]
i=1...n,j=1...n

[
∂f
∂xj

]
i=1...n

.
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Proof. This is a definition-chase and the chain rule. Explicitly, by definition:

∂f

∂yi

∣∣∣∣
p

= Di(f ◦ y−1)(y(p)) = Di((f ◦ x−1) ◦ (x ◦ y−1))(y(p))

=

n∑
j=1

Dj(f ◦ x−1)(x(p))Di((x ◦ y−1)j)(y(p))

=

n∑
j=1

∂f

∂xj

∣∣∣∣
p

· ∂x
j

∂yi

∣∣∣∣
p

The chain rule appear in the middle.

Remark. From now on, all maps will be differentiable, unless otherwise
stated. Thus, when referring to a “map” above, it should be read as “differ-
entiable map” (or better, “a map in the category Diff”).

Let f : M → N be a map of manifolds, and let (x, U), (y, V ) be charts
on M,N , respectively. One can define the Jacobian matrix of f at p (with
respecto the charts (x, U) and (y, V )):

Jf (p) :=

[
∂(yi ◦ f)

∂xj

∣∣∣∣
p

]
.

Then we define the rank of f : M → N to be the rank of the Jacobian
matrix.

Proposition 2.7. The rank is well-defined.

Proof. Suppose (x′, U ′) is another chart containing p, and (y′, V ′) is another
chart containing f(p). Then by restricting both x and x′ to U ∩ U ′, we can
assume that U = U ′ and V = V ′. Then the rank of f at p is both the rank
of the Jacobian [

∂(yi ◦ f)

∂xj

∣∣∣∣
p

]
and the Jacobian [

∂((y′)i ◦ f)

∂(x′)j

∣∣∣∣
p

]
.
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Consider the diagram:

M
f // N

U
x′

}}

?�

OO

x
��

f
∣∣∣
U // V
?�

OO

y

��

y′

!!
Rn

x◦x′−1
// Rny◦f◦x

−1
// Rn Rn

y◦y′−1
oo

Then xx′−1, yfx−1, and yy′−1 are maps from (open subsets of) Rn to Rn.
Consider the composition (y′y−1) ◦ (yfx−1) ◦ (xx′−1) = y′fx′−1. Applying
the chain rule, we get that the second Jacobian matrix is just a conjugate of
the first Jacobian by invertible matrices. These have the same rank.

We say that a point p ∈M is critical for f if rank f < m (the dimension
of N). Otherwise it is regular. We say that a point q ∈ N is regular if all
the points in the preimage f−1(q) are regular points.

Example 2.8. Let M = N = R and let f : M → N . Then a point p ∈ R
is regular if and only if f ′(p) 6= 0. In other words, critical points correspond
to either maxima, minima or plateaus of the graph of f inside R2.

One can also think of critical points as points where the inverse function
theorem fails (which is the topic of the next lecture). See Figure 4. F
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Figure 4: Critical points of the sine function.

3 Sard’s theorem and the Inverse Function Theo-
rem

Last time we spoke about critical points, i.e. those points where the Jacobian
of a map had non-maximal rank (the maximal rank of a map Rn → Rm is
n). Sard’s theorem says that most points p ∈M are non-critical (=regular).

Think of the case f : R2 → R. The graph of such a function is a surface
in R3. In this case, the theorem says that the maxima of this function
constitute no “volume”.

To be able to state the theorem, we have to present some definitions, the
first one being, that of “measure 0”. We start with a subset A ⊂ Rn. We say
that it has measure 0 if it can be covered by a sequence of (open) rectangles
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Rab in such a way that
n∑
i=1

vol(Rab) < ε

for every ε > 0. Here’s an example:

Example 3.1. Consider the real line {y = 0} ⊆ R2. Intuitively, this has
zero volume, as a subset of R2. Let Ban, 1

n3
be the rectangle centered at origo

with width n and height 1
n3 . Since the height is finite, clearly the union of

all these rectangles (for n ∈ N) cover the real line. The sum of the volumes
is

∞∑
i=1

a

n2
=
aπ2

6
,

so choosing a < 6ε
π2 , gives total volume less than ε. F

Now, a subset A of a manifoldM hasmeasure 0 if there exists a countable
sequence of charts (xi, Ui) with A ⊆

⋃
Ui such that each xi(A ∩ Ui) has

measure 0. To see that this notion is well-defined, one turns to Lemma 6 in
Spivak, which says that smooth functions take measure 0 sets to measure 0
sets.

Now, Sard’s theorem says the following:

Theorem 3.2. If f : M → N is a C∞-map of n-manifolds, and M has at
most countably many components (e.g. one), then the critical values of f
form a set of measure zero in N .

This, in some sense, is similar to a theorem in algebraic geometry, which
says that the smooth points of a variety are dense in the Zariski topology.

We will not prove Sard’s theorem here, but just note that it is at least
intuitively plausable.

3.1 The Inverse Function Theorem

We are used to thinking about the derivative of a function f : Rn → Rm as
a linear approximation to f near a point p, i.e. a linear map f : Rn → Rm.
Linear maps live in vector spaces and not on manifolds, so we should really
think of the derivative as some kind of functor taking maps f : U → V
(where U, V are open subsets of Rn and Rm, respectively) to vector space
maps Df(p) : T (Rn)→ T (Rm), where the T means that we are thinking of
just the vector space Rn.

For a map f : Rn → Rm and a point p ∈ Rn, we define the vector space
map Df(p) as follows:

14



Definition 3.3. If it exists, the map Df(p) : Tp(Rn) → Tf(p)(Rm) is the
unique linear map satisfying

lim
h→0

|f(a+ h)− f(a)−Dpf(h)|
|h|

= 0

If we choose the standard coordinate systems on Rn and Rm, then Dpf(p)
has a matrix

[
Djf

i(a)
]
of partial derivatives (the Jacobian). �

In particular, the chain rule takes a very nice form with this notation. It
just says that given two maps, the derivative of the composition is just the
composition of the derivatives:

Rn f //

g◦f
22Rm g // Rp

This gives that

Tp(Rn)
Dpf //

Dp(g◦f)
22Rm

Df(p)g // Rp

is commutative.
Now we state the inverse function theorem:

Theorem 3.4. Suppose p ∈ U ⊆ Rn and that f : U → Rn is a smooth
function. Suppose further that the Jacobian is non-singular at p, i.e. that
p is a regular value of f (or equivalently that Df (p) is an isomorphism of
vector spaces).

Then there exists a neighbourhood V of p such that f
∣∣
V
is invertible and

such that f
∣∣
V

−1 is smooth. Moreover, the following equality holds:

J
f
∣∣∣
V

−1(f(p)) = Jf (p)−1.

In words (that will have meaning later), this says that if the tangent map
is an isomorphism at a point p, then f is locally a diffeomorphism near p.
This is a theorem special to differential geometry. Similar situations does
not occur in algebraic or complex geometry, because inverse functions are
usually not algebraic/complex.
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4 Rank theorems

In this lecture we will elaborate on some “structure theorems” on maps
f : M → N , given restrictions on the rank of f , the first one being the
following:

Theorem 4.1. Let f : Mn → Nm be a map of manifolds.

1. If f : Mn → Nm has rank k at p, then there charts (x, U) and (y, V )
containing p and f(p), respectively, such that

y ◦ f ◦ x−1(a) =
(
a1, . . . , ak, ψk+1(a), . . . , ψm(a)

)
for all a ∈ U .

2. If furthermore, f : Mn → Nm has rank k in a neighbourhood of p, then
there are charts (x, U) and (y, V ) containing p and f(p), respectively,
such that

y ◦ f ◦ x−1(a) =
(
a1, . . . , ak, 0, . . . , 0

)
for all a ∈ U .

Proof. 1. Start by choosing any coordinate system (u, U ′) around p. Since

the rank of the Jacobian
[
∂(yα◦f)
∂uβ

∣∣∣
p

]
is k at p, there is some k×k-minor

that is non-zero. So, after permuting coordinates, we can assume that
this minor is the upper-left block of the Jacobian.

We define new local coordinates as follows:

xα = yα ◦ f for α = 1, . . . , k

xr = ur for r = k + 1, . . . , n.

Now consider the change of basis matrix:

[
∂xi

∂uj

∣∣∣∣
p

]
=


∂(yα◦f)
∂uβ

X

0
1

1
1


Since the upper corner has determinant non-zero , the whole has de-
terminant non-zero. Hence, by the inverse function theorem, (x, U) is
a diffeomorphism in a neighbourhood U of p. Thus x = (x ◦ u−1) ◦ u

16



is a coordinate system near p, and in fact it is the coordinate system
we want:

y ◦ f ◦ x−1(a1, . . . , an) = y ◦ f
(
fα,−1(yα,−1(a1), . . . , ur−1(an)

)
=
(
a1, . . . , ak, ?, . . . , ?

)
.

Where the questions marke denote u−1(ar), which we don’t care about.
What is important, is that the coordinates have the desired form.

2. Start by choosing coordinate systems (x, U) and (v, V ′) as in 1). Since
the rank of f is k in a neighbourhood, the all of the components of the
lower right rectangle of the matrix

[
∂(vi ◦ f)

∂xj

]
=



1
1

1
0

X
Dk+1ψ

k+1 · · · Dnψ
k+1

...
...

Dk+1ψ
m · · · Dnψ

m


must vanish in a neighbourhood of p. In particular, this means that ψ
is a function only of the first k coordinates of a, i.e. that it is constant
along the last n− k coordinates.

Now define new local coordinates on N by letting

yα = vα for r = 1, . . . , k

yr = vr − ψr ◦ (v1, . . . , vk) for r = k + 1, . . . ,m.

Notice that the last line makes sense because ψ only depends on the
first k coordinates. It is easy to see that the change of base matrix has
non-zero Jacobian at v(q), so (y, V ) is actually a coordinate system,
where V is a neighbourhood of f(p).

Moreover:

y ◦ f ◦ x−1(a1, . . . , an) = y ◦ v−1 ◦ v ◦ f ◦ x−1(a1, . . . , an)

= y ◦ v−1
(
a1, . . . , ak, ψk+1(a), . . . , ψm(a)

)
=
(
a1, . . . , ak, 0, . . . , 0

)
17



The first equality is by part 1), and the second follows by definition of
y.

Thus if the rank is constant in a neighbourhood, the theorem says that
the map locally looks like an inclusion of the first k coordinates in Rm.

If the rank is maximal, the theorem says even more:

Theorem 4.2. 1. If m ≤ n and f : Mn → Nm has rank m at p, then
for any coordinate system (y, V ) around f(p), there is some coordinate
system (x, U) around p with

y ◦ f ◦ x−1(a1, . . . , an) =
(
a1, . . . , am

)
.

2. If n ≤ m and f : Mn → Nm has rank n at p, then for any coordinate
system (x, U) around p, there is a coordinate system (y, V ) around f(p)
with

y ◦ f ◦ x−1(a1, . . . , an) =
(
a1, . . . , an, 0, . . . , 0

)
.

Proof. Part 1 is just the previous theorem. So we concentrate on part 2.
[[comes later]]
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5 Embeddings

Figure 5: A cusp.

What does it mean to put one manifold into
another manifold? It turns out that this
isn’t completely trivial to define.

First off, we want the embedding to re-
spect the smooth structure in some sense.
This is achieved by requiring that the map
has full rank everywhere:

Definition 5.1. A map f : Mn → Nm for
m ≥ n is an immersion if rank f = n every-
where. �

Example 5.2. Consider the zero set of the
equation y2 = x3, or equivalently, the im-
age of the map f(t) = (t2, t3). It is injective
everywhere, but it is not an immersion, be-
cause the rank is zero at the origin (because
the derivative is (2t, 3t2) which is zero for
t = 0). See Figure 5. F

Example 5.3. Let α : R→ R2 be parametrized by
(
t2 − 1, (t2 − 1)t

)
. It is

a nodal curve, and its derivative is α′(t) =
(
2t, 3t2 − 1

)
, which is nowhere

zero. But it has self-intersections, and we do not want to allow that. See
Figure 6. F

Example 5.4. Another example is given by embedding a curve into the
torus with irrational slope: α(t) =

(
ei
√
2t, ei

√
2t
)
.

This is an immersion, but the image is dense in S1 × S1! F

These problems “usually” vanish with the following definition:

Definition 5.5. An embedding is a map that is both an immersion and a
homeomorphism onto its image. �

We call the image of an embedding a submanifold.

Remark. This is a sensible definition: it uses both the topological and the
differentiable structure of the manifolds, whereas the first definition used only
the differentiable structure. A similar situation occurs in algebraic geometry,
where a closed immersion of schemes is defined not just as a i closed inclusion
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Figure 6: A nodal curve.

of the underlying topological spaces, but as a pair (f, f#), where the first
is a map of topological spaces, and the second is surjetive map of sheaves
f# : f∗OY → OX .

Here’s an important result:

Proposition 5.6. If f : M → N has constant rank k in a neighbourhood of
f−1(y), then f−1(y) is a closed submanifold of M .

Proof. To give f−1(y) the structure of a manifold, it is enough to give charts
and glueing maps. Since f has rank k everywhere in f−1(y), there exists
charts (x, U) ⊂Mn and (y, V ) ⊂ Nm such that y ◦f ◦x−1 = (x1, · · · , xn) 7→
(x1, · · · , xk, 0, · · · , 0).

We may assume that y(y) = 0, so that x(U ∩ f−1(y)) = {x1 = x2 =
· · · = xk = 0}. This is an n− k-dimensional closed subspace of U .

Example 5.7. Consider Figure 7. If we define a map F : R2 → R by
(x, y) 7→ x2− y2, we get a function whose graph has a saddle point. As long
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as we’re looking at F−1(a) for a non-zero, the inverse image is a hyperbola,
which is a smooth (disconnected) manifold. However, when a = 0, the fiber
(i.e. the contour line) is a pair of double lines, which is not even a manifold.
The reason is that the rank of F is zero at (0, 0). F

Figure 7: The countour lines of the function F (x, y) = x2 − y2.

Example 5.8. Let f : R2 → R be the map f(x, y) = x2 + y2 − 1. It has
constant rank 1 as long as we’re away from the origin. Then the theorem
says that f−1(0) = {x2 + y2 = 1} ≈ S1 is a closed submanifold av R2. F
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6 Bump functions and partitions of unity

What makes differential geometry “taste” differently than complex or alge-
braic geometry is the existence of “bump functions”.

6.1 Useful functions

Recall that the support of a function f : X → R is the closure of the set
{x | f(x) 6= 0}.

Example 6.1. The first function is an example of a non-zero function whose
Taylor series around any point is zero (thus it is an non-analytical function).

h(x) =

{
e−

1
x2 x 6= 0

0 x = 0.

F

Example 6.2. This is an example of a function whose support is [−1, 1],
but is zero everywhere else.

j(x) =

{
e−(x−1)

−2 · e−(x+1)−2
x ∈ (−1, 1)

0 x 6∈ (−1, 1)
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Note that this function is, roughly, the same as h(x − 1) · h(x + 1) inside
(−1, 1). By composing with a linear change of coordinates, we get a function
which is positive on (0, δ) and 0 elsewhere. F

Example 6.3. There is a function l : R→ R which is zero for x ≤ 0, strictly
increasing on (0, δ), and equal to 1 for x ≥ δ:

l(x) =

∫ x
0 k(x)dx∫ δ
0 k(x)dx

.

F
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Example 6.4. By mirroring the function l(x) from the previous example
around x = δ + 1, we get a function f(x) which is constantly equal to 1 on
(δ, δ+1), and has support [0, 2δ+1]. By affine transformations, the function
can be made to be 1 on any bounded interval K and support on any interval
containing K. F

Example 6.5. There is a function g : Rn → R which is positive on the open
square (−ε, ε)× · · · × (−ε, ε) and zero elsewhere:

g(x) =

n∏
i=1

j(xi/ε).

F

Example 6.6. Generalizing Example 6.4, by defining φ : Rn → R as

φ(x) =
n∏
i=1

f(xi),

we get a function which is constantly equal to one on a closed, bounded
square, and has support in a slightly larger square. F

The last example can be generalized to general manifolds:

Proposition 6.7. Let M be a smooth manifold and K a compact subset of
M and U an open subset containing K. Then there exists a smooth function
β : M → [0, 1] that is constant equal to 1 on K and compact support contained
in U .

Proof. We first do the case M = Rn. In this case, K is compact, so it is
closed and bounded. For each p ∈ K, let Up be an open square of radius
εp centered at p and contained in U . The set of all these Up is an open
cover of K, and since K is compact, we can choose finitely many such p.
By translation, the function in the last example, can be made such that fp
is positive in the interior of Up and zero outside (so its support is Ūp), and
constant 1 on K ∩ Up. Now define the following function:

β(x) = 1−
∏
p

(1− fp(x)) ,

where the product ranges over those finitely many p needed to cover K.
Then, if x ∈ K, x is contained in one of the Up ∩K, hence β(x) = 1. The
support is clearly bounded, hence compact.
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Now to the general case. If K is contained in a single chart, we are
done by the above. If not, K is contained in finitely many charts (Ui, xi),
hence we can find compact sets K1, · · · ,Kk with K ⊂

⋃k
i=1Ki, Ki ⊂ Ui and⋃

i Ui ⊂ U . Let φi be identically 1 on Ki and zero on M\Ui. Then define

β(x) = 1−
k∏
i=1

(1− φi(x)).

6.2 Partition of unity

Partitions of unity is an extremely important tool, but to define it, we need
some technical definitions. To motivate all this, we will note that when
we are done, we will be able to prove that any compact manifold can be
embedded into real Euclidean space RN for some large N .

Definition 6.8. We say that a family U of open sets is an open cover of
M if ⋃

U∈U

U = M.

�

Definition 6.9. We say that U ′ is a refinement of U if for all U ∈ U ′,
there exists some V ∈ O with U ⊆ V . �

Example 6.10. Cover R with the single open set R, so that U = {R}.
Now consider the cover given by U ′ = {(−∞, 1), (−1,∞)}. Then U ′ is a
refinement of U .

Let U ′′ = {(−2, 2), (0,∞), (−∞, 0)}. Then U ′′ is not a refinement of
U ′. F

Definition 6.11. We say that an open cover U is locally finite if for every
p ∈M , there are only finitely open sets U in U with {p} ∩ U 6= ∅. �

Theorem 6.12. If U is an open cover of a connected manifold M , then
there exists a locally finite refinement U ′ of U .

Moreover, we can choose these U ′ in such a way that U ′ ≈ Rn as dif-
ferentiable manifolds.

Remark. We skip the proof. Now it’s time to note that we are hiding details
under carpets: for this theorem to be true, we must assume that M is σ-
compact, meaning that we can write M as a countable union of compact
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subsets. In particular, this is clearly true if M itself is compact. Note also
that all subsets of Rn have this property.

Theorem 6.13 (Shrinking Lemma). Let U be an open cover of M . Then
it is possible to choose for each U ∈ U an open set U ′ with Ū ′ ⊂ U in such
a way that the new collection {U ′} is also an open cover M .

Remark. In particular, this new open cover is a refinement of U .

Theorem 6.14 (Existence of partitions of unity). Let U be an open locally
finite cover of a manifold M . Then there is a collection of C∞-functions
ϕU : M → [0, 1] for each U ∈ U such that

1. suppϕU ⊂ U for each U .

2.
∑

U∈U ϕU (p) = 1 for all p ∈ M . (this makes sense because the cover
is locally finite!)

Definition 6.15. A collection {ϕi : M → [0, 1]} is called a partition of unity
if (1) the collection {p |ϕi(p) 6= 0} is locally finite and (2) if

∑
i ϕi(p) = 1

for all p ∈M .
If for each i there is an U ∈ U such that suppϕi ⊂ U , then we say that

the collection is subordinate to U . �

So the theorem says that given a locally finite cover U of a manifold M ,
there exists a partition of unity subordinate to U .

Example 6.16. Let M = R and cover M by U1 = (−1,∞) and U2 =

(−∞, 1). Let ϕ1(x) = l(x+1)
l(x+1)+l(−x−1) . And similarly, ϕ2(x) = l(−x+1)

l(x+1)+l(−x+1) .
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Then the partition of unity looks like the graph above. Notice that it sums
to 1 everywhere. F

Theorem 6.17. Let Mn be a compact manifold. Then there exists an em-
bedding f : M → RN for some N .

Proof. By compactness we can choose a finite number of coordinate systems
{(xi, Ui)}i=1,...,k, coveringM . By the Shrinking Lemma 6.13, choose U ′i ⊆ Ui,
and by Partition of Unity, choose functions ψi : M → [0, 1] that are 1 on Ū ′i
and have support contained in Ui. This can be done by Proposition 6.7.

Define f : M → RN , where N = k(n+ 1), by

f = (ψ1 · x1, . . . , ψk · xk, ψ1, . . . , ψk) .

This is an immersion: any point p ∈ M is contained in some U ′i , and on
U ′i , where ψi = 1, the N × n Jacobian matrix contains the identity matrix(
∂xαi
∂xβi

)
.

The map is also one-one. For suppose that f(p) = f(q). There is some
i with p ∈ U ′i . But then q ∈ Ui since the support of ψi is contained in that
set. Moreover, ψi · xi(p) = ψixi(q), so p = q, since xi is 1− 1.

Remark. Note that this embedding is highly non-canonical. It contains sev-
eral layers of choices. The proof begins by choosing a finite open cover, and
then choosing a refinement, and then choosing a partition of unity. None of
these choices are natural in any sense.
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7 The tangent bundle

Think of a surface S ⊆ R3 and let p be a point on S. Then the tangent plane
of S is a linear subspace of R3. Thus, in the case of embedded manifold, it
is easy to assign a “tangent space” to each point p ∈ S. However, for general
manifolds, we are not given an embedding anywhere. What we want is some
rule that assigns to each point p ∈ S a vector space of the same dimension
as S, called the “tangent space”. Also, we want this rule to reflect the global
structure of S in a natural way.

More formally, we want a functor from manifolds to vector bundles, such
that its restriction to chart domains, the result is just Rn, as a vector space.
To carry this out, we first formally introduce the “tangent space” of Rn (or
open subsets thereof).

We define T (Rn) := Rn × Rn, and we write its elements as (p, v) or vp,
where we think of the left factor as the manifold Rn, and the right factor as
the vector space Rn. Thus, to each point p in Rn, we attach a vector vp.

Now we have defined the functor T on objects. Now we define it on
morphisms, so let f : Rn → Rm be a smooth function. Then we define
Tf : T (Rn) → T (Rm) by Tf(p, v) = (f(p), Df(p)(v)). By the chain rule,
this is really a functor, because if g : Rm → Rk is another smooth function,
we have

T (g) ◦ T (f)(p, v) = T (g)(f(p), Df(p)(v))

= (g(f(p)), Dg(f(p))(Df(p)(v)))

= (g ◦ f(p), D(g ◦ f)(v))

= T (g ◦ f).

To generalize this construction to general manifolds, we need to notion
of a vector bundle:

Definition 7.1. A vector bundle over M is a map π : E →M , where E is a
manifold, such that for each p ∈M , there is an open neighbourhood U , and
a homeomorphism eq : π−1(U)→ U × Rn in such a way that

t
∣∣
π−1({q}) : π−1({q})→ {q} × Rn

is a vector space isomorphism for all q ∈ U .
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A map of vector bundles is just a commutative diagram

E1

π1
��

f̃ // E2

π2
��

B1
f // B2

such that, when restricted to each fiber, the map f̃ : π−11 (p)→ π−12 (f(p)) is
a linear map. �

Thus we have a category of vector bundles, which we shall denote by
VBundles. We have a natural map p : VBundles → Diff that sends a vector
bundle to its base. The fiber p−1(M) is a category, called the category of
vector bundles over M , which we shall often denote by VBundles(M).

We call a vector bundle E trivial if it is isomorphic to M ×Rn (with the
obvious maps).

This really generalizes the T (Rn) above: it is trivally a vector bundle
over Rn, and it is easy to see that it restricts to a sub-vector bundle for any
open subset U ⊂ Rn.

Requring only that T (U) = U × Rn for U an open subset of Rn and
functoriality, there is a unique extension of T from open subsets of Rn to
general manifolds.

Theorem 7.2. Let M be a smooth manifold. Then there is a functor T :
Diff → VBundles that to each manifold M associates a vector bundle over M
in such a way that if (U, x) is a chart domain of M , we have T (U) = U×Rn.

Proof. Here is a proof sketch. Cover M by open chart domains (xi, Ui).
Each of these are isomorphic to Rn, so we define TM

∣∣
Ui

:= xi(Ui) × Rn,
with the obvious projection map. On the intersections Ui ∩ Uj we have a
map xj ◦ x−1i : Rn → Rn, and we define

TM
∣∣
Ui∩Uj

→ TM
∣∣
Ui∩Uj

by
(u, v) 7→

(
xj ◦ x−1i (u), D(xj ◦ x−1i )(u)(v)

)
.

That this is well-defined on triple overlaps should follow from the chain rule,
and all these glueing maps make TM into a manifold. Local triviality is
clear by construction.

We call the vector bundle π : TM →M the tangent bundle of M .
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Example 7.3. Consider the circle S1. It is covered by two open sets S1\N
and S2\S. The map φ1 : S1\N is given by (x, y) 7→ x

1−y , and the inverse

map is given by φ−11 (x) =
(

2x
x2+1

, x
2−1
x2+1

)
. Similarly, φ2(x, y) = x

1+y , and the

inverse is φ−12 (x) =
(

2x
x2+1

,−x2−1
x2+1

)
. Thus T (S1) is covered by two open

sets U = T (R1) and V = T (R1). The transition map φUV is given by
(x, v) 7→ (φ2 ◦ φ−11 (x), D(φ2 ◦ φ−11 )(x)(v)), which we compute to be

(x, v) 7→
(

1

x
,− v

x2

)
.

This is well-defined, since x ∈ R\{0}.
Then I claim that TS1 ≈ S1 × R1, that is, the tangent bundle of the

circle is trivial. To do this, we cover the circle with the same open sets as
above, so that S1 is covered by the two open sets U ′ × R and V ′ × R with
transition maps φU ′V ′ : (x, v) 7→ ( 1x , v). This is truly a product, because the
second factor does not interact with the first.

An isomorphism TS1 ≈ S1 × R1 is the same thing as maps from the
charts from one manifold to the other that agrees on the overlaps. So we
define, from U × R to U ′ × R a map given by (x, v) 7→ (x, v), and from
V × R to V ′ × R, a map given by (x, v) 7→

(
x,− b

a2

)
. Then the reader can

check that the following diagram commutes, and so we have defined a map
on manifolds, that is an isomorphism on charts and agrees on overlaps, hence
an isomorphism of manifolds:

U × R φUV //

(x,v)7→(x,v)
��

V ×R
(x,v)7→(x,− b

a2
)

��
U ′ × R

φU′V ′
// V ′ × R

F

Example 7.4 (The tangent bundle of S2 is not trivial). It is not hard to
see that a n-bundle E → M is trivial if and only if it admits n everywhere
linearly independent sections.

Then the non-triviality of TS2 follows from the the Hairy Ball Theorem,
which says that every vector field on the sphere must vanish at least some-
where. This in turn follows from the Poincaré-Hopf theorem, which says
that ∑

i

indexxi(X) = χ,

30



where the left-hand-side is a certain sum ranging over the zeros of the vector
field X, and the right-hand-side is the Euler characteristic of the sphere,
which is two - so X must have at least one zero. F

The construction of the tangent space here is the most intuitive one:
locally it looks like U × Rn. However, there are other views one can take.
One is to consider points of TM as equivalence classes of curves, as follows:
let [x, v]p ∈ TpM . Then we say that this corresponds to a curve x−1◦γ where
γ is a curve in Rn with γ′(0) = v (here x is a coordinate chart). It is not so
difficult to see for every vector v in TpM , there is a curve with derivative v.
Taking equivalence classes resolves uniqueness.

The other view is to consider elements of TpM to be derivations. To
define these, let first Op consist of all functions f : U → R where U is a
neighbourhood of p, where we consider f : U → R and g : V → R to be
equal if there is a neighbourhood W ⊂ U ∩W such that f

∣∣
W

= g
∣∣
V
. More

formally, Op is really the direct limit lim−→O(U), where O(U) is the sheaf of
C∞ functions f : U → R.

Then we claim that TpM can be considered as the set of derivations
` : Op → Op. Formally, a derivation at p is a function from Op to Op that
is linear and satisfies the Leibniz rule

`(fg)(p) = f(p)`(g)(p) + g(p)`(f)(p).

To see that derivations actually land in Op, we must show the following
lemma:

Lemma 7.5. If f : W → R and g : W → R represent the same function in
Op, and ` is a derivation, then `(f) = `(g).

Proof. Cleary we can assume g = 0. So we need to prove that if f is zero in
a neighbourhood of p, then `(f) is also zero in a neighbourhood of p.

Choose a C∞ function h : M → R with h(p) = 1 and support contained
in f−1({0}). Such a function exists by Proposition 6.7. Let q ∈ W , where
W is the smallest neighbourhood of p such that f ≡ 0 on W .

0 = `(0)(q) = `(fh)(0) = f(p)`(h)(q) + h(p)`(f)(q) = 0 + `(f)(q).

Thus `(f)(q) = 0 for all q ∈W , hence `(f) = 0.

Here’s a lemma:
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Lemma 7.6. Let f ∈ O(U) 2 with f(0) = 0, where U ⊂ Rn and U is convex.
Then there are C∞ functions gi : U → R with

1. f(x1, · · · , xn) =
∑n

i=1 x
igi(x

1, · · · , xn) for all x ∈ U .

2. gi(0) = Di(f)(0).

Proof. Define a new function hx : [0, 1]→ R for each x ∈ U as hx(t) = f(tx).
This makes sense since U is assumed to be convex. Then

f(x) = f(x)− f(0) =

∫ 1

0
h′x(t)dt =

∫ 1

0

n∑
i=1

Dif(tx)xidt.

Therefore we can let gi(x) =
∫ 1
0 Dif(tx)dt.

Note that if (x, U) is a chart domain of M around p, then ∂
∂xi

∣∣
p
is a

derivation at p. In fact, the derivations ∂
∂xi

∣∣
p
span the space of derivations

at p.

Theorem 7.7. The set of derivations at p ∈Mn is an n-dimensional vector
space. In fact, if (x, U) is a coordinate system around p, then

∂

∂x1

∣∣∣∣
p

, · · · , ∂

∂xn

∣∣∣∣
p

span this vector space, and any derivation ` can be written

` =

n∑
i=1

`(xi) · ∂
∂xi

∣∣∣∣
p

.

Proof. We can clearly assume M = Rn. Then using the Lemma, we see that
any `(f), where ` is a derivation, can be written as

`(f) =

n∑
i=1

`(xi)
∂f

∂xi
(0).

Thus they span the space of derivations, and they are clearly linearly inde-
pendent.

If (y, V ) is another coordinate system, then we know that ∂
∂yi

∣∣∣
p

=
∑n

j=1
∂xj

∂yi

∣∣∣
p

∂
∂xj

∣∣
p
,

so the derivations transform exactly the same way as the charts of TM . So
we identify them.

2From now on, unless otherwise stated, the notation O(U) will denote the set of C∞-
functions from U to R.

32



7.1 Operations on vector fields

A vector field is a section of TM . They are often denoted by capital letters
such as X,Y and Z. The vector X(p) ∈ Mp is often denoted Xp. Thinking
of TM as the set of derivations, we have

X(p) =
n∑
i=1

ai(p)
∂

∂xi

∣∣∣
p

for some continuous functions ai(p).
If X and Y are vector fields, then they can be added:

(X + Y )(p) = X(p) + Y (p).

Similarly, if f : M → R, we can define the vector field fX by

fX(p) = f(p)X(p).

Thus we see that the set of vector fields, Γ(TM), is a module over the
C∞-functions C∞(M) = Γ(OM ).

If f : M → R is a function and X is a vector field, then we can define a
new function X(f) : M → R by letting X operate on f at each point:

X(f)(p) = Xp(f).

Example 7.8. Let M = R3 and let X be the vector field X = x ∂
∂x + y ∂

∂y .
Let f be the function f(x, y, z) = x2 + y2 + z2. Then

X(f) = x
∂f

∂x
+ y

∂f

∂y
= 2x2 + 2y2.

F
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8 Tensors

8.1 Miscellany on the exterior algebra

The construction of the tangent bundle can be generalized to give other types
of vector bundles: each fiber TMp can be dualized to give T ∗Mp, the dual
vector space. These spaces glue to give the cotangent bundle, denoted by
T ∗M . It has a basis consisting of differentials.

Now each of the T ∗Mp are finite-dimensional vector spaces, and as such,
we can form the exterior algebra

∧
T ∗Mp. This is the quotient of the tensor

algebra on T ∗Mp by the two-sided ideal generated by elements of the form
v1⊗ · · · ⊗ vk with vi = vi+1 for some i. This is a graded algebra, so we write∧
T ∗Mp =

⊕n
k=0

∧k T ∗Mp. The sum is finite, since
∧n+1 T ∗Mp = 0, as is

easily seen (here n is the dimension of M). Elements of
∧p T ∗Mp are called

p-forms, and we will see later that they are what one integrates over.
Since we have a canonical isomorphism (for vector spaces V )

∧
V ∗ '

(
∧
V )∗, we think of the exterior algebra as parametrizing multilinear maps

TpM × . . .× TpM → R.

8.2 The cotangent bundle

Given a map f : M → R, we can produce a section of the cotangent bundle:

Definition 8.1. We define a section df : M → T ∗M as follows: df(p)
should act on tangent vectors, so given a tangent vector Xp ∈ TpM , we
define

df(p)(Xp) := Xp(f)

�

To see how this looks like in a chart, see the Appendix.
The cotangent bundle have better functorial properties than the tangent

bundle. In the case of the tangent bundle, there were no way to push tangent
fields forward nor pull them back via a map f : M → N . However, it
is possible to pull back cotangent fields (this is sort of a miracle, as the
cotagent bundle does not appear all that different from the tangent bundle).
Given a map f : M → N , and a section ω : N → T ∗N , we can define a
new section f∗ω : M → T ∗M as follows: we must say how it acts on vectors
Xp ∈ TpM :

f∗ω(p)(Xp) := ω(f(p))(f∗(Xp)).
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The idea is clear: tangent vectors can be pushed forward, and this allows us
to act on it by ω. To see how this works in coordinates, see the Appendix.

Wikipedia has a good article on pullbacks: http://en.wikipedia.org/
wiki/Pullback_(differential_geometry).

Example 8.2. Let M = R3. Let ω be the section of the cotangent bundle
defined by zdx− dz. Let X = y ∂

∂x + x ∂
∂y . Then

ω(X) = z.

Here we use only that dxi and ∂
∂xi

are dual bases. F

Example 8.3. Let c : S1 → R2 be given by θ 7→ (sin θ, cos θ) and let
ω = ydx− xdy be a differential form on R2. Then c∗ω is given by

c∗ω = cos θ
∂c1

∂θ
dθ − sin θ

∂c2

∂θ
dθ =

(
cos2 θ + sin2 θ

)
dθ = dθ.

F

8.3 General tensor fields

Proposition 8.4. The smooth bilinear pairing Γ(TM)×Γ(T ∗M)→ C∞(M)
given by (X,ω) 7→ ω(X) defines an isomorphism Γ(T ∗M) ≈ Γ(TM)∗.

Thus to give a tensor field is the same as giving a multilinear map from
tangent vectors. This is really a theorem, and relies heavily on the existence
of bump functions.
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9 Vector fields and differential equations

Let X : M → TM be a vector field. Then one can ask: is there a curve
ρ : (−ε, ε)→M with ρ(0) = p ∈M such that

ρ′(t) = Xρ(t) ∀t ∈ (−ε, ε)?

This is a local question, so we can assume that M = Rn. Then a vector
field X on Rn is a just a smooth function f : V → Rn, where V is some open
neighbourhood, which we assume contains zero. Then the above equation
just reads:

ρ′(t) = f(ρ(t)).

This is just an ordinary differential equation of order one. In the beginning
of this section we will study the existence and uniqueness of solutions of
these in Rn.

Two examples will illuminate the kind of pathologies (or problems, if you
like) that can arise:

Example 9.1. Set n = 1 and f(y) = −y2. We seek a curve c(t) with
c(0) = x ∈ R. Here f corresponds to the vector field X that assigns to every
number y a vector pointing backward of length y2. We get the equation

− 1

c2
dc

dt
= 1.

Integrating both sides: ∫
− 1

c2
dc

dt
dt =

∫
1dt∫

− 1

c2
dc =

∫
1dt

1

c
= t+ C,

yielding either c(t) = 1/(c + C) as a solution, for some constant C, or
c(t) = 0 for all t, the latter alternative occuring if c(0) = 0. But if c(0) 6= 0,
the solution is not defined for all t! It does not extend outside (− 1

x ,
1
x) in

both directions. This is one of the problems that can occur. F

Example 9.2. Again n = 1. Now let f(y) = y2/3. Set c(0) = 0. Then we
get the equation

dc

dt
= c2/3, c(0) = 0.

But there are two solutions! The curve is not unique! F
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There is a theorem, however:

Theorem 9.3. Let V ⊂ Rn be open and f : V → Rn. Let x0 ∈ V and a > 0
be such that ¯B2a(x0) ⊂ V . If there are K,L such that

1. |f(x)| ≤ L on B2a(x0), i.e. f is L-bounded.

2. |f(x)− f(y)| ≤ K|x− y| on B2a(x0), i.e. f is K-Lipschitz.

then choose b > 0 such that

3. b ≤ 1/L and

4. b ≤ 1/K.

Then for each x ∈ Ba(x0), there exists a unique curve αx : (−b, b)→ U such
that

α′x(t) = f(αx(t)) and αx(0) = x.

Sketch of proof. Topologize the set of maps Y = {α : (−b, b)→ B2a(x0)} by
the sup metric. ThenM is a complete metric space. One defines an operator
S : Y → Y by

(Sα)(t) = x+

∫ t

0
f(α(u))du.

Then one sees that if S has a fixed point, then it is a solution to our differen-
tial equation. One shows that S is a contraction, and this implies that there
exists a unique fixed point solution by the contraction lemma of analysis.

Then there is some checking to do, and the proof is complete.

Write αx(t) as α(t, x) to get a map

α : (−b, b)×Ba(x0) // V

(t, x) � // α(t, x) = αx(t)

satisfying α(0, x) = x and d
dtα(t, x) = f(α(t, x)). This map α is called the

local flow for f in (−b, b)×Ba(x0).
Suppose y = αx(t0) for some t0 ∈ (−b, b) (think of this as starting at x

and following the flow for a time t0). Then the reparametrized integral curve

t � // β(t) := αx(t+ t0)
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satisfies β′(t) = f(α(t0 + t)) = f(β(t)), with β(0) = αx(t0) = y. This means
that β satisfies the conditions that uniquely determine αy, so β(t) = αy(t)
for t near 0 on

(−b, b) ∩ (−b− t0, b− t0).

This means that αx(t+ t0) = αy(t) for t near zero. Thus:

Proposition 9.4. For each t ∈ (−b, b) we get a map

φt : Ba(x0) // V

x � // α(t, x)

Such that φ0(x) = x and φs+t(x) = φs(φt(x)) for s, t, s + t ∈ (−b, b). In
particular, φ−t = φ−1t , so each φt is a bijection.

Theorem 9.5. The flow

α : (−b, b)×Ba(x0) // V

is continous. Hence each φt is also continous.

Sketch of proof. Let S denote the operator used in the previous theorem.
Using a geometric series trick, one proves that

sup
t
|α(t, x)− α(t, y)| = ‖αx − αy‖ ≤

1

1− bK
|x− y|,

where αx is a solution of the differential equation starting at x and αy a
solution starting at y. This inequality implies continuity of α.

Proposition 9.6 (Spivak cites Lang). If f : V → Rn is C∞, then the flow
is also C∞. Hence each φt is smooth.

Proof. "Introduction to Differentiable Manifolds" by Serge Lang.

Here’s a theorem:

Theorem 9.7. Let X be a C∞ vector field on M and let p ∈ M . Then
there is an open set V containing p and an ε > 0 such that there is a unique
collection of diffeomorphisms φt : V → φt(V ) ⊂ M for |t| < ε with the
following properties:

1. φ : (−ε, ε)× V →M defined by φ(t, p) = φt(p) is C∞.
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2. If |s|, |t|, |s+ t| < ε, and q and φt(q) ∈ V , then

φs+t(q) = φs ◦ φt(q).

3. If q ∈ V , then Xq is the tangent vector at t = 0 of the curve t 7→ φt(q).

If M is compact, or more generally, if X has compact support, then the
local diffeomorphisms above can be extendend to all of M :

Theorem 9.8. If X has compact support, then there are diffeomorphisms
φt : M →M for all t ∈ R, satisfying the above three properties.

For proof, see Spivak. To get a sense of what this theorem is about, image
X being a vector field on the sphere: let imagine it be horizontal “winds”.
Then the φt “twist” the sphere more and more.

The map t 7→ φt above is called a 1-parameter group of diffeomorphisms
and is generated by X. If Diff(M) is the group of diffeomorphisms of M ,
then the above tells us that each vector field X gives us a map R→ Diff(M),
given by t 7→ φt.

Theorem 9.9. Let X be a smooth vector field on M with X(p) 6= 0. Then
there is a coordinate system (x, U) around p such that

X =
∂

∂x1
.

9.1 Lie derivatives

Here are some definitions that are really different instances of the same def-
inition:

LXf = X(f) = lim
h→0

1

h
[f ◦ φh − f ]

LXω = lim
h→0

1

h
[(φ∗hω)− ω]

LXY = lim
h→0

1

h
[Y − (φh∗Y )p]

Proposition 9.10. Let X,Y1, Y2 be vector fields and ω1, ω2 be covector fields.
Then

1. Lx(Y1 + Y2) = LXY1 + LXY2.

2. LX(ω1 + ω2) = LXω1 + LXω2.
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3. LX(fY ) = Xf · Y + f · LXY .

4. LX(f · ω) = Xf · ω + f · LXω.

If we let [X,Y ] denote the vector field given by [X,Y ]p(f) = Xp(Y f)−
Yp(Xf), then one sees that

LXY = [X,Y ].

Now it follows, almost trivially, that

LXY = −LYX

and
LXX = 0.

We also have the Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Recall: If we have a diffeomorphism, we can push forward vector fields
by defining (α∗X)q = α∗Xα−1(q).

Lemma 9.11. Let α : M → N be a diffeomorphism and X a vector field on
M which generates {φt}. Then α∗X generated {α ◦ φt ◦ α−1}.

Corollary 9.12. If α : M →M , then α∗X = X if and only if φt◦α = α◦φt
for all t.

Lemma 9.13. Let X generate {φt} and Y generate {ψt}. Then [X,Y ] = 0
if and only if φt ◦ ψs = ψs ◦ φt for all s, t.

Theorem 9.14. If X1, · · · , Xk are linearly independent C∞ vector fields
around p and [Xi, Xj ] = 0 for all i, j, then there is a coordinate system
(x, U) around p such that

Xα =
∂

∂xi

for i = 1, · · · , n.
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10 Differential forms

Depending upon taste, there are several ways to define differential forms.
This has already been mentioned in an earlier chapter. Perhaps this is the
time to reflect upon the strange order of things in Spivak’s book?

Suffice it to say that the only thing that is needed of the exterior algebra,
regardless of the particular construction, is the anticommutativitiy property,
mimicking determinants (or if you’re so inclined: defining determinants).

10.1 Basic theorems

Theorem 10.1. Let f : M → N be a map between n-manifolds of the same
dimension n. Let (x, U) be a coordinate system around p ∈M and (y, V ) be
a coordinate system around q = f(p) ∈ N . Then

f∗(g dy1 ∧ . . . ∧ dyn) = (g ◦ f) · det

(
∂yi ◦ f
∂xj

)
dx1 ∧ . . . ∧ dxn.

Theorem 10.2. A manifold M is orientable if and only if there exists a
non-vanishing form ω ∈ Ωn(M).

10.2 The de Rham complex

If
ω =

∑
I

ωIdx
I .

Then we define

dω :=
∑
I

dωIdx
I =

∑
I

n∑
α=1

∂ωI
∂xα

dxα ∧ dxI .

Example 10.3. Let ω be the 2-form on R3 defined by ω = xdx∧dy−ydx∧dz.
Then

dω = dx ∧ dx ∧ dy − dy ∧ dx ∧ dz = dx ∧ dy ∧ dz.

F

Proposition 10.4. 1. d(ω1 + ω2) = dω1 + dω2.

2. There is a Leibniz rule: if ω1 is a k-form, then

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2.
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3. d2 = 0.
Further, if d′ is another function Ωk(M)→ Ωk+1(M) obeying these rules,

then d = d′.

Corollary 10.5. There is a unique operator from k-forms on M to k + 1-
forms on M satisfying the above rules.

Proof. The above proposition says that for each coordinate system (x, U),
we have a unique dU defined. Given the form ω and p ∈M , pick any U with
p ∈ U and define

dω(p) = d(ωU )(p).

This proves the claim. 3

Proposition 10.6. If f : M → N is C∞ and ω is a k-form on N , then

f∗(dω) = d(f∗ω).

10.3 The Poincaré Lemma

Recall that a manifold M is smoothly contractible to a point p0 ∈M if there
is a map H : M × [0, 1]→M such that H

∣∣
1

= idM and H
∣∣
0
is the constant

map mapping to p0.

Example 10.7. The canonical example is Rn: a contraction to ~0 ∈ Rn is
defined just by t~x. More generally, any convex region in Rn is contractible.
Even more generally, every star-shaped region in Rn is contractible.

Even more generally, any region homotopic to a starshaped (hence con-
vex) region is contractible. F

The Poincaré Lemma states that if ω is a closed form on a contractible
manifold M , then M is exact. In short, Hk

dR(M) = 0 for k > 0. In fact, we
will prove something more general. To do that, we need some terminology:

For any t ∈ [0, 1] we have natural maps it : M ↪→ M × [0, 1]. Thus for
each t, we have pullback maps i∗t : Ωk

M×[0,1] → Ωk
M . By Proposition 10.6, this

induces maps on cohomology. We will prove that they in fact define the same
map on cohomology. In fact, they are chain homotopic. We will construct a
map I : Ωk+1

M×[0,1] → Ωk
M for all k, such that d(Iω) + I(dω) = i∗1ω − i∗2ω. By

standard homological algebra, this implies that the maps on cohomology are
equal.

3However, I don’t see why. If U ′ is another coordinate chart, how does one see that
dU′(ω|U ′)(p) gives the same number?
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We have the following diagram:

Ωk−1
M

d // Ωk
M

Ωk−1
M×[0,1]

i∗1

OO

i∗0

OO

d // Ωk
M×[0,1]

i∗1

OO

i∗0

OO

d //

I

ee

Ωk+1
M×[0,1]

I

ee

We want to show the relation d(Iω) + I(dω) = i∗1ω − i∗2ω for some I that
will be defined now.

Recall that if V is a vector space that is the tensor product of two vector
spaces A,B, then

∧k V =
⊕

i+j=k

∧iA ⊗
∧j B. Applying this to Ωk

M×[0,1]
gives that we have a canonical decomposition as abelian groups

Ωk
M×[0,1] ≈ Ωk

M ⊕ Ω1
[0,1] ⊗ Ωk−1

M ≈ Ωk
M ⊕ Ωk−1

M ,

where the last isomorphism is non-canonical, and can be seen after choosing
bases. In particular, this says that any k-form ω ∈ Ωk

M×[0,1] can be written
uniquely (after choosing bases) as ω1 + (dt ∧ η) for some η ∈ Ωk−1

M×[0,1].
4

Having written ω in this way, we define I as follows:

Iω(p)(X1, · · · , Xk−1) :=

∫ 1

0
η(p, t)(it∗X1, . . . , it∗Xk−1)dt.

In coordinates, this works as follows: Suppose (x, U) is a coordinate chart.
Then we can write ω =

∑
I a

IdxI +
∑

J a
Jdt ∧ dxJ where I ranges over k-

subsets of {1, · · · , n}, and J ranges over (k− 1)-subsets of {1, · · · , n}. Then
η =

∑
J a

JdxJ . Thus

Iω(p) =
∑
J

∫ 1

0
aJ(p, t)dt dxJ .

Here’s the theorem:

Theorem 10.8. For any k-form ω on M × [0, 1], we have

i∗1ω − i∗0ω = d(Iω) + I(dω).

Proof. Since all maps involved are linear, there are basically just two cases.
Case A is when ω = ω1 (in the notation above), involving no dt-terms, say

4As it stands, this is not precise. There exists a canonical splitting, but not as stated.
Both factors are still C∞(M × [0, 1])-modules, and this is not reflected in the notation.
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ω = fdxI . In this case Iω = 0, so we need to prove that i∗1ω − i∗0ω = I(dω).
The left hand side is just

i∗1ω(p)− i∗0ω(p) = f(p, 1)dxI − f(p, 0)dxI = (f(p, 1)− f(p, 0)) dxI .

The right hand side is

I(d(fdxI)) = I

((∑
i

∂f

∂xi
dxi +

∂f

∂t

)
∧ dxI

)

=

(∫ 1

0

∂f

∂t
dt

)
dxI

But these two expressions are equal by the fundamental theorem of calculus.
Now for Case B. Here ω = fdt ∧ dxJ . In this case i∗tω = 0 for all t, so

we want to prove that d(Iω) = −I(dω):

d(Iω)(p) = d

(∫ 1

0
f(p, t)dt ∧ dxJ

)
=

n∑
i=1

∂

∂xi

(∫ 1

0
f(p, t)

)
dxi ∧ dxJ

I(dω)(p) = I

(
n∑
i=1

∂f

∂xi
dxi ∧ dt ∧ dxJ

)

= I

(
−

n∑
i=1

∂f

∂xi
dt ∧ dxi ∧ dxJ

)

= −
n∑
i=1

(∫ 1

0

∂f

∂xi
dt

)
dxi ∧ dxJ .

Thus the proof is complete.

The Poincaré Lemma now follows as an easy corollary:

Lemma 10.9 (Poincaré5). IfM is contractible, then Hk
dR(M) = 0 for k > 0.

Proof. Let ω be such that dω = 0. We are given a H : M × [0, 1] → M as
above. I.e. such that H ◦i0 = p0 (the constant map to p0), and H ◦i1 = idM .
Thus

ω = id∗Mω = (H ◦ i1)∗ω = i∗1(H
∗ω)

5Though it is not clear if Poincaré actually proved it.
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and also
0 = (H ◦ i0)∗(ω) = i∗0(H

∗ω)

This last pullback is zero because every form on a point-space vanishes.
But also d(H∗ω) = H∗(dω) = H∗(0) = 0, by Proposition 10.6. But then
ω = i∗1(H

∗ω) = d(I(H∗ω)) by the Theorem. Thus ω is a boundary, and so
Hk = 0.
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11 Integration

A map c : [0, 1]k → M is called a singular k-cube in M . By convention, a
singular 0-cube is just the assignment of a point in M . The inclusion map
I : [0, 1]k → Rk will be called the standard k-cube. The idea is that we will
integrate over “cubes”.

Given a k-form ω on [0, 1]k and a coordinate system x1, · · · , xk, ω can
be uniquely written as

ω = fdx1 ∧ · · · ∧ dxk.

For some function f ∈ Γ([0, 1]k,O [0,1]k).

Definition 11.1. If ω is a k-form on [0, 1]k, we define the integral of ω to
be ∫

[0,1]k
ω :=

∫
[0,1]k

f,

where the right-hand side denotes classical integration over subsets of Rn. �

This immediately generalizes to forms on M :

Definition 11.2. If ω is a k-form on M , and c is a singular k-cube in M ,
we define ∫

c
ω =

∫
[0,1]k

c∗ω.

The right-hand side was defined in the previous proposition. �

Remark. A k-cube is just a map c : [0, 1]k →M , and on the left manifold,
we have a canonical set of coordinates. The values of c∗ω at points p ∈ [0, 1]k

only depend upond this chart, and no charts ofM are needed in the definition.
Hence this is well-defined.

Remark. If k = 0, then sections of Ωk(M) are just functions M → R.
In particular, each 0-form is just a function f , and a 0-cube is just a map
c : {0} →M . In this case∫

c
ω =

∫
{0}

c∗ω = c(f(0)).

Now, let Ck be the free abelian group generated by all k-forms. Explic-
itly, the elements of Ck are finite sums n1c1+ · · ·+nrcr, where the ni are real
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numbers and the ci are k-forms. We call the elements of Ck for k-chains.
Then we define the integral of a k-chain c to be∫

c
ω :=

r∑
i=1

ni

∫
ci

ω.

This way, we get for each k an “integration” pairing
∫

: Ck × Ωk(M) → R,
which is obviously bilinear.

Proposition 11.3. Let c : [0, 1]n → Rn be a one-one singular n-cube with
det c′ ≥ 0 on [0, 1]n. Let ω be the n-form

ω = fdx1 ∧ . . . ∧ dxn.

Then ∫
c
ω =

∫
c([0,1]n)

f.

Proof. ∫
c
ω =

∫
[0,1]n

c∗ω

=

∫
[0,1]n

(f ◦ c)(det c′)dx1 ∧ . . . dxn

=

∫
[0,1]n

(f ◦ c) | (det c′) | dx1 ∧ . . . dxn

=

∫
c([0,1]n)

f

The first equality is by definition, the second is by a basic theorem about
transformation of wedge algebras. The third is by assumption, and the fourth
is by the change og variable formula in ordinary calculus (see for example
Spivak’s “Calculus on Manifolds”, Theorem 3.13, page 67.

The corollary below says that the integral is independent of orientation-
preserving reparametrizations of the k-cube. In particular, the map

∫
above

is really a function from equivalence classes of k-cubes to R.

Corollary 11.4. Let p : [0, 1]k → [0, 1]k be one-one onto with det p′ ≥ 0.
Let c be a singular k-cube in M and let ω be a k-form on M . Then∫

c
ω =

∫
c◦p

ω.
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Proof. We have ∫
c◦p

ω =

∫
[0,1]k

(c ◦ p)∗ω =

∫
[0,1]k

p∗(c∗(ω))

=

∫
[0,1]k

c∗(ω)

=

∫
c
ω.

The last equality is by definition, the one before that follows from the pro-
postion, since p is onto.

11.1 The boundary of a chain

One should think of 1-chains as sums of “paths” on M . Then the boundary
∂c is just the difference c(1) − c(0) in C0(M)6. For a 2-form c, one should
think of c as some “surface” lying on M , and ∂c as the oriented boundary of
c.

Let Ik : [0, 1]k → Rn be the standard k-cube. From this, we can define
several (k − 1)-cubes as follows: Suppose x ∈ [0, 1]k−1. Then let

Ik(i,α)(x) = (x1, . . . , xi−1, α, xi, . . . , xk−1).

Here α = 0, 1 and i = 1, · · · , k − 1. We call this the (i, α)-face of Ik. For a
general k-cube c, we define the (i, α)-face to be ci,α := c ◦ In(i,α).

Definition 11.5. The boundary ∂c of a k-cube c is defined to be

∂c :=

n∑
i=1

∑
α=0,1

(−1)i+αc(i,α).

We extend to general k-chains c ∈ Ck(M) by additivity.
If k = 0, we define ∂c =

∑
ai, where the ai are the coefficients of c in

Ck. �

We have a complex!

Proposition 11.6. If c is a k-chain in M , then ∂(∂(c)) = 0. Or in jargon:
∂2 = 0.

6Recall that this abelian group is the group freely generated by the points on M . In
fancy language, one obtains C0(M) by first applying the forgetful functor F : Diff → Set,
and then the “free abelian group functor” Set→ Ab.
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Proof. Without loss of generality, we can assume that i ≤ j. An easy com-
putation gives that:

(In(i,α))(j,β)(x) =
(
x1, . . . , xi−1, α, xi, . . . , xj−1, β, xj , . . . , xn−2

)
,

where the α is in the ith position, and β is in the j+1th position. Similarly:

(In(j+1,β))(i,α)(x) =
(
x1, . . . , xi−1, α, xi, . . . , xj−1, β, xj , . . . , xn−2

)
.

Thus (In(i,α))(j,β) = (In(j+1,β)(i,α) for i ≤ j ≤ n − 1. Thus, for any singular
n-cube c, we have that (c(i,α))(j,β) = (c(j+1,β))(i,α) for i ≤ j ≤ n − 1. Now,
by definition:

∂∂(c) = ∂(
n∑
i=1

∑
α

(−1)i+αc(i,α))

=
n∑
i=1

∑
α

∑
β

n−1∑
j=1

(−1)i+j+α+β(c(i,α))(j,β).

But (c(j+1,β))(i,α) appear with opposite sign as (c(i,α))(j,β), so all terms cancel!

The homology groups gives the singular smooth homology groups of M
(with coefficients in R), and are denoted simply by Hk

∞(M,R). By applying
Hom(−,R) to the complex, we get the dual complex, and thus the singular
smooth cohomology groups of M , denoted by Hk

∞(M,R).
We say that a chain is closed if ∂c = 0. A chain c is a boundary if c = ∂b

for some b ∈ Ck+1(M).

Theorem 11.7 (Stoke’s Theorem). If ω is a (k − 1)-form on M and c is a
k-chain in M , then ∫

c
dω =

∫
∂c
ω.

The integration map descends to homology:

Proposition 11.8. We have a map:∫
: Hk(M,R)⊗Hk

dR(M)→ R.

Proof. We need to show that the map (c, ω) 7→
∫
c ω does not depend on the

homology classes of c and ω. By bilinearity of the pairing, it is enough to
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show that if either of c or ω are boundaries, then the pairing is zero. So
assume ∂c = 0 and dω = 0, and first that c = ∂c′.∫

c
ω =

∫
∂c′
ω =

∫
c′
dω =

∫
c′

0 = 0.

Now assume ω = dη. Then∫
c
ω =

∫
c
dη =

∫
∂c
η = 0

since ∂c = 0.

11.2 Connection to the fundamental group

It is a fact of topology that π1(M)/[π1(M), π1(M)] ≈ H1(M). We will prove
something weaker.

Proposition 11.9. If π1(M) is finite, then H1(M) = 0.

For this, we need a lemma.

Lemma 11.10. Suppose M is connected. Let ω ∈ Z1(M) and suppose
[ω] 6= 0 in H1(M). Then there exists a loop γ : S1 →M such that

ω(γ) :=

∫
S1

γ∗ω 6= 0.

Proof. Assume on the contrary that ω(γ) = 0 for all γ : S1 →M . Choose a
base point x0 ∈M . We want to define f such that df = ω.

Suppose γ1, γ2 : [0, 1]→M are two paths, both starting at x0 and ending
at x. Then γ1 ◦ γ−12 : S1 →M is a loop. Then by the assumption:

ω(γ1 ◦ γ−12 ) =

∫ 1

0
γ∗1ω −

∫ 1

0
γ∗2ω = 0

This shows that the function

f(x) :=

∫ 1

0
γ∗ω

for any γ a path starting at x0, ending at x is a well-defined function.
Now we claim that df = ω. For this, choose a chart (U, x) around x,

and write ω =
∑n

i=1 a
idxi. We can suppose that x = 0 in this chart. Write
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df(0) as
∑n

i=1
∂f
∂xi

∣∣∣
0
dxi. Then we want to check that each of the terms are

equal. Let us compute ∂f
∂xi

∣∣∣
0
:

∂f

∂xi

∣∣∣∣
0

= lim
h→0

1

h
(f(h, 0, · · · , 0)− f(0))

= lim
h→0

1

h

(∫ 1

0
γ∗ω +

∫ 1

0
τ∗hω −

∫ 1

0
γ∗ω

)
= lim

h→0

1

h

∫ 1

0
τ∗hω.

Here τh is the path starting at 0 and ending at h, given simply by ht~e1, where
~e1 is the first unit vector in Rn. Then τ∗hω = ha1(ht, 0, · · · , 0)dx1. Thus the
last integral is simply

lim
h→0

1

h

∫ 1

0
τ∗hω = lim

h→0

1

h

∫ 1

0
ha1(ht, 0, · · · , 0)dx1 = lim

h→0

∫ 1

0
a1(ht, 0, · · · , 0)dt

=

∫ 1

0
a1(0, · · · , 0)dt = a1(0, · · · , 0).

As wanted. But this means that [ω] = 0 in H1(M), contrary to assumption.

Proof of the Proposition. If π1(M) is finite, then for all [γ] ∈ π1(M), there
is an integer n such that [π]n = [0]. This means that for the n-fold concate-
nation Γ := γ · . . . · γ, there is a homotopy H : S1 × [0, 1] → M such that
H
∣∣
0

= Γ and H
∣∣
1

= k, a constant function.
Now let ωinΩ1(M) be a 1-form with dω = 0. Then by Stoke’s theorem∫

S1×[0,1]
F ∗dω =

∫
S1

(γ · · · γ)∗ω −
∫
S1

k∗ω = n

∫
S1

γ∗ω = 0.

Thus all curves integrate to zero on all forms, and then by the Lemma, we
must have H1(M) = 0.

11.3 Cohomology of the sphere

We will compute the cohomology of the sphere differently than what is done
in the book, which uses a partition of unity argument.

For this, we will need the Mayer-Vietoris-sequence.
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Proposition 11.11 (Mayer-Vietoris). Let M = U ∪ V be covered by two
open sets. Then we have an exact sequence

· · ·Hk−1(U∩V )→ Hk(M)→ Hk(U)⊕Hk(V )→ Hk(U∩V )→ Hk+1(M)→ · · ·

Proof. First note that we have short exact sequence of complexes:

0→ Ω◦(U ∪ V )→ Ω◦(U)⊕ Ω◦(V )→ Ω◦(U ∩ V )→ 0

This gives the long exact sequence.

Corollary 11.12. For M = Sn and n ≥ 1 we have H0(Sn) = R,Hn(Sn) =
R and Hk(Sn) = 0 for 0 < k < n.

Proof. We can cover Sn by two open sets as follows. Let U = Sn{N},
removing the north pole. Similarly, remove the south pole to get V . Then
U ∩ V ≈ Rn\{0}. But this is homotopic to the n− 1-sphere as follows:

t~x+ (1− t) ~x

| ~x |
.
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A Definitions

Here f : M → N is a map. α : M → N is a diffeomorphism. X is a vector
field. {φh} is the 1-parameter subgroup generated by X.

(f∗Xp)(g) = Xp(g ◦ f)

(f∗ω)(p)(Xp) = ω(f(p))(f∗Xp)

(α∗X)p = α∗(Xα−1(p))

LXf = Xf

LXω = lim
h→0

1

h
[φ∗hω − ω]

LXY = lim
h→0

1

h
[Y − φh∗Y ] = [X,Y ](p)

φ∗(df)(Y ) = Y (f ◦ φ)

df(p)(Xp) = Xp(f)

LXdf = d(LXf) = d(Xf)
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B Formulas

B.1 Local description of (co-)vector fields

By local triviality, every vector field X : M → TM locally looks like U ×Rn,
where Rn is the n-dimensional vector space spanned by { ∂

∂x1

∣∣
p
, · · · , ∂

∂xn

∣∣
p
}

for p ∈ U . In particular:

Proposition B.1. Let X : M → TM be a section of the tangent bundle.
Then in a local coordinate system x : U → Rn, X can be written as

X(p) =
n∑
i=1

ai(p)
∂

∂xi

∣∣∣∣
p

.

The ai are C∞ functions U → R.

Similarly, if ω : M → T ∗M is a section of the cotangent bundle, the
fibers are spanned by the differentials {dx1, · · · , dxn}.
Proposition B.2. Let ω : M → T ∗M be a section of the cotangent bundle.
Then in a local coordinate system x : U → Rn, ω can be written as

ω(p) =

n∑
i=1

ai(p)dxi(p).

Vector fields act on functions f : M → R. In coordinates:

Proposition B.3. If f : M → R is a function, and U is an open trivializing
neighbourhood of p, then

X(f)(p) =
n∑
i=1

ai(p)
∂(f ◦ x−1)

∂xi

∣∣∣∣
p

.

Proof. This is just Proposition B.1 applied to a function f , keeping in mind
that the ∂

∂xi

∣∣
p
are derivations.

If f : M → R is a C∞ map, then it induces a section of the cotangent
bundle as follows: df(p)(X) = X(f). In local coordinates we have the
following:

Proposition B.4. Let f : M → R be a C∞ map and (x, U) a chart. Then

df =

n∑
i=1

∂f

∂xi
dxi

Proof. Let X = ∂
∂xi

∣∣
p
and use that the set of these are a dual basis for

{dxi(p)}.
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B.2 Pullbacks and pushforwards

Given a map f : M → N and a point p ∈ M and a vector Xp ∈ TpM , we
can push forward Xp to f∗Xp, simply by functoriality of f∗.

Given a map f : M → N and a covector field on N (i.e. a section
ω : N → T ∗M of the cotangent bundle), there is a pullback covector field on
M , denoted f∗ω.

Definition B.5 (Pushforward of tangent vectors). If Xp is a tangent on M ,
then we can define a tangent vector on N by

f∗(Xp)(g) := Xp(g ◦ f).

�

Definition B.6. Let x : U → R be local coordinates on M and let y : V →
Rm be local coordinates on N . Let

Xp =
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

.

Then

f∗(Xp)(g) =
m∑
j=1

n∑
i=1

∂yj

∂xi

∣∣∣∣
p

∂

∂yj

∣∣∣∣
p

.

�

Definition B.7 (Pullback of cotangent fields). We define how f∗ω acts on
vectors Xp ∈ TpM :

(f∗ω)(p)(Xp) := w(f(p))(f∗(Xp)).

�

In coordinates this looks as follows:

Proposition B.8. Let x : U → Rn be local coordinates on M and y : V →
Rm be local coordinates on N . Let ω be described locally by

ω =
m∑
i=1

aidyi.

Then f∗ω is described locally by

f∗ω(p) =

n∑
i=1

m∑
j=1

∂(yj ◦ f)

∂xi

∣∣∣∣
p

ai(f(p))dxi(p).

55



If we define 〈−,−〉 by 〈ω,X〉 := ω(X), we have:

Proposition B.9. Pushforward and pullback are actually dual. That is,

〈f∗ω,X〉 = 〈ω, f∗X〉.

Proof. This is actually the definition.

B.3 Lie derivatives

The Lie derivative of a function f : M → R along X is just LXf := Xf .
Thus, in coordinates, this is just X(f), so the coordinate description is the
content of Proposition B.3.

The Lie derivative of a covariant vector field is by definition

LXω(p) := lim
h→0

1

h
[(φ∗hω)(p)− ω(p)] .

Before we give the coordinate description of LXω, we want to prove a useful
lemma:

Lemma B.10. We have LXdf = d(LXf).

Proof. This is just definition-hunting. We let LX(df) act on a tangent vector
Y .

LX(df)(p)(Yp) = lim
h→0

1

h
[(φ∗hdf)(p)− df(p)] (Yp)

= lim
h→0

1

h
[(φ∗hdf)(p)(Yp)− df(p)(Yp)]

= lim
h→0

1

h
[Yp(f ◦ φh)(p)− Yp(f)(p)]

= Yp lim
h→0

1

h
[(f ◦ φh)(p)− f(p)]

= Yp ·Xf(p) = d(Xf)(Yp)(p).

Dropping the Yp and the p from the notation gives the result.

Here’s another useful lemma:

Lemma B.11.
φ∗(df)(Y ) = Y (f ◦ φ).

Proof. By definition φ∗(df)(p)(Yp) = df(φ(p))(φ∗Yp). Also df(φ(p))(φ∗Yp) =
φ∗Yp(φ)(f) = Yp(f ◦ φ). Everything was just definitions.
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In coordinates we have the following:

Proposition B.12. Let ω have local description as

ω(p) =
n∑
i=1

bi(p)dxi.

Then

LXω =
n∑
i=1

n∑
j=1

(
aj
∂(bi ◦ x−1)

∂xj
dxi + bi

∂ai

∂xj
dxj
)
.

Proof. We first calculate LXdxi. From Proposition B.10 we have LXdf =
d(LXf) = d(Xf), so that

d(LXx
i) = d(Xxi) = d

 n∑
j=1

aj
∂xi

∂xj

 = dai.

Thus, using Proposition B.4, we conclude that d(LXx
i) =

∑n
j=1

∂ai

∂xj
dxj .

Now, using the fact that LX(f · ω) = Xf · ω + f · LXω, we can calculate
LX(bidxi):

LX(bidxi) = X(bi) · dxi + bi · LXdxi

=

n∑
j=1

aj
∂bi

∂xj
dxi +

n∑
j=1

bi
∂ai

∂xj
dxj

=

n∑
j=1

(
aj
∂bi

∂xj
dxi + bi

∂ai

∂xj
dxj
)
.

The result follows by summing over all i.

The Lie derivative of a vector field Y along a vector field X is defined as
follows:

(LXY )(p) = lim
h→0

1

h

[
Yp − (φh∗Y )p

]
.

We can define the bracket [X,Y ] by [X,Y ](p)(f) = Xp(Y f)−Yp(Xf). Then
we have:

Proposition B.13.
LXY = [X,Y ]
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Proof. Let f : M → R be a function and let X generate {φt}. Define

α(t, h) := Yφ−t(p)(f ◦ φh).

We differentiate in each direction. First, we have

∂α

∂t

∣∣∣∣
(0,0)

= lim
t→0

1

t

[
Yφ−t(p)(f)− Yp(f)

]
= − lim

1

t

[
Yp(f)− Yφ−t(p)(f)] = −Xp(Y f).

On the other hand:

dd
∣∣
α
h(0, 0) = lim

h→0

1

h

[
Yp(f ◦ φh)− Yp(f)

]
= Yp(Xf).

Now, set c(h) = α(h, h) = Yφ−h(p)(f ◦ φh). Then, by the chain rule, the
derivative c′(0) is given by adding the two derivatives above. In addition:

−c′(0) = lim
h→0

1

h

[
Ypf − Yφ−h(p)(f ◦ φh)

]
= lim
h→0

1

h

[
Ypf − φh∗Yφ−h(p)(f)

]
= lim
h→0

1

h

[
Ypf − (φhY )p(f)

]
= LXY (p)(f).

Thus LXY (p)(f) = [X,Y ]p(f).

From the above proof, it is easy to derive a coordinate expression for
LXY = [X,Y ].

Proposition B.14. Let X =
∑n

i=1 a
i ∂
∂xi

and Y =
∑n

i=1 b
i ∂
∂xi

. Then

LXY =

n∑
i=1

n∑
j=1

(
aj
∂bi

∂xj
− bi∂a

j

∂xi

)
∂

∂xi
.

Proof. This is just a matter of calculation:

LXY (f) = [X,Y ](f) = X(Y f)− Y (Xf)

= X

(
n∑
i=1

bi
∂f

∂xi

)
− Y

(
n∑
i=1

ai
∂f

∂xi

)

=

n∑
i=1

(
X

(
bi
∂f

∂xi

)
− Y

(
ai
∂f

∂xi

))
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Now, using the chain rule, we find that

X

(
bi
∂f

∂xi

)
=

n∑
j=1

(
aj
∂f

∂xi
∂bi

∂xj
+ ajbi

∂2f

∂xi∂xj

)
.

The double derivates cancel in the difference above, so that we end up with

LXY =
n∑
i=1

n∑
j=1

(
aj
∂bi

∂xj
− bi∂a

j

∂xi

)
∂

∂xi
.

C A concrete exercise

This will be a solution to a mandatory assignment given in 2013.
Let M(3) be the real vector space of 3× 3 matrices. Let Sym(3) by the

subspace of symmetric matrices (AT = A) and Skew(3) be the subspace of
skew-symmetric matrices. Note that Sym(3) ' R6 and Skew(3) = R3. Let
f : M(3)→ Sym(3) be the smooth map given by f(A) = AAT . Let O(3) be
the orthogonal group, i.e. the set {A ∈ M(3) | AAT = I}, and notice that
it is the kernel of the map f .

Exercise 1. Show that f∗A : TAM(3)→ Tf(A)Sym(3) is given by

f∗A(C) = ACT + CAT .

♠

Solution 1. Consider the curve c(t) = A + tC in M(3) through A with
tangent vector C. Then we want to compute (f ◦c)∗( ∂∂t

∣∣
0
). The composition

f ◦ c is given by

(f ◦ c)(t) = AAT + tACT + tCAT + t2CCT .

Now derivation with respect to t gives (f ◦ c)∗A(C) = ACT + CAT .z ♥

Exercise 2. Show that I is a regular value of f . ♠

Solution 2. Recall that p is a regular value if p the differential f∗p is sur-
jective.

So let D ∈ TISym(3). Then f∗I(C) = CT + C. Then 1
2D is mapped to

D, since D is symmetric. ♥
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Exercise 3. Show that O(3) is a smooth submanifold of M(3), and deter-
mine its dimension. ♠

Solution 3. This is immediate from Proposition 5.6. The dimension is
easily seen to be 9− 6 = 3. This is intuitively clear because O(3) is the set
of orthogonal transformation of R3. The orientation-preserving elements of
O(3) are given by rotation about a line. Choosing a line is a 2-dimensional
choice (equivalent to picking a point in P2

R), and rotation is a 1-dimensional
choice. ♥

Now let k : O(3) ↪→M(3) denote the inclusion map.

Exercise 4. Prove that the image of k∗A : TAO(3) ↪→ TAM(3) ≈ M(3) is
equal to the subspace K := {C ∈M(3) | ACT + CAT = 0}. ♠

Solution 4. Note that the exercise is equivalent to the exactness of the
sequence

0 // TAO(3)
k∗A // TAM(3)

f∗A // Tf(A)Sym(3) // 0

The only non-trivial part is exactness in the middle. Since f is constant on
elements of O(3), the composite f∗ ◦ k∗ = (f ◦ k)∗ is zero. Hence im k∗ ⊆
ker f∗.

Consider the map Skew(3)→ K given by S 7→ SA−1,T (A inverse, trans-
posed). This is a bijection since A is invertible, hence K has dimension 3.
Thus the dimensions are equal, and the sequence is exact. ♥

Thus we can identify TAO(3) with this subspace of M(3). In particular,
k∗I identifies TIO(3) with Skew(3).

For each C ∈ Skew(3), let X(C) : O(3) → TO(3) be the vector field
given by X(C)A = AC in TAO(3), for each A ∈ O(3).

Exercise 5. Show that X = X(C) is left invariant, in the sense that `∗X =
X for each diffeomorphism ` : O(3)→ O(3) given by left multiplication with
elements B ∈ O(3). ♠

Solution 5. The map ` is the restriction of a linear map, hence its derivative
is given simply by multiplication by B. Then, by definition

(`∗X)D = B(B−1DC) = DC

But also XD = DC. ♥
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Take as known the fact that the series

eC =
∞∑
n=0

Cn

n!

defines a smooth map exp : M(3) → M(3), satisfying e(s+t)C = esCetC for
s, t ∈ R and C ∈M(3).

Exercise 6. Prove that exp restricts to a smooth map : exp : Skew(3) →
O(3), and compute the derivative at t = 0 of the curve t 7→ exp(tC) through
I in O(3). ♠

Solution 6. It is enough to prove that exp
∣∣
Skew(3)

factors through the sub-
manifoldO(3) ⊂M(3). But this is easy: if C ∈ Skew(3), then exp(C) exp(C)T =
exp(C + CT ) = exp(0) = I, so the image lands in O(3). The derivative is
easily calculated:

lim
t→0

exp(tC)− I
t

= lim
t→0

(I + tC +
t2C2

2
+ . . .− I) = C.

♥

Exercise 7. Let C ∈ Skew(3) and let X = X(C) be the associated left
invariant vector field with XI = C. Show that the 1-parameter group of
diffeomorphisms {φt}t generated by X is given by

φt(A) = A exp(tC)

for t ∈ R and A ∈ O(3). ♠

Solution 7. Since such a 1-parameter group of diffeomorphisms is uniquely
defined by the vector field, , it is enough to check that the map φt(A) satisfies
the conditions.

First of all, the map R × O(3) → O(3) gives by (t, A) 7→ A exp(tC) is
smooth, since a product of smooth functions is smooth.

Secondly, by the additive properties of the exponential, we have

φs+t(A) = A exp((s+t)C) = A exp(sC) exp(tC) = φS(A) exp(tC) = φt(φs(A)).

Thirdly, the tangent vector of the curve t 7→ φt(C) is by the previous exercise
simply C. ♥
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Exercise 8. Let D ∈ Skew(3) and let Y = X(D) be the associated left
invariant vector field with YI = D. Show that

(φt)∗(Y )A = A exp(tC)−1D exp(tC).

for all t ∈ R and A ∈ O(3). ♠

Solution 8. Note that φt is given by right-multiplication by exp(tC), hence
the same is true for φt∗. Now, by definitions:

(φt)∗(Y )A = φ∗φ−1
t (A)(Yφ−1

t (A))

= φ∗φ−t(A)(A exp(−tC)D)

= A exp(−tC)D exp(tC).

Now the result is clear by a property of the exponential map. ♥

Exercise 9. Prove that the Lie derivative LXY of Y = X(D) with respect
to X = X(C) satisfies

LX(C)(X(D)) = X([C,D])

for C,D ∈ Skew(3), where the commutator [C,D] = CD−DC is computed
in Skew(3) ⊂M(3). ♠

Solution 9. We first compute the Lie derivative (LXY )A for A ∈ O(3).
This is a straight-forward calculation:

(LXY )A = A lim
h→0

1

h

[
D − exp(tC)−1D exp(tC)

]
= A lim

h→0

1

h

[
D −D exp(tC) +D exp(tC)− exp(tC)−1D exp(tC)

]
= A lim

h→0

1

h

[
D(I − exp(tC)) + (1− exp(tC)−1)D exp(tC)

]
= A

(
D lim

h→0

1

h
[I − exp(tC)] + lim

h→0

1

h
[I − exp(−tC)]D

)
= A(−DC + CD) = A(CD −DC) = A[C,D] = X([C,D])A.

The statement now follows. ♥

Let ξ : O(3) → R3 be given by ξ(A) = (a23, a13, a12) where A = (aij)ij ,
so that ξ(I) = 0 = (0, 0, 0).

62



Exercise 10. Show that ξ∗I : TIO(3) → T0R3 ≈ R3 is an isomorphism.
Explain why there is an open neighbourhood U ⊂ O(3) of I with ξ(U) ⊂ R3

an open neighbourhood of 0 such that ξ
∣∣
U
→ ξ(U) is a diffeomorphism. ♠

Solution 10. The map ξ is (the restriction of) a linear map, hence its deriva-
tive is given by the same map. In particular, the natural basis for Skew(3)
is mapped to the standard basis vectors of R3, so ξ∗ is an isomorphism at
the identity.

The other claim follows from the inverse function theorem. ♥

Let x = ξ
∣∣
U
so that (x, U) is a smooth chart on O(3) near I.

Exercise 11. Compute the images C,D and E ∈ Skew(3) (under k∗I) of
the vectors

∂

∂x1

∣∣∣∣
I

,
∂

∂x2

∣∣∣∣
I

,
∂

∂x3

∣∣∣∣
I

∈ TIO(3)

♠

Solution 11. By the explanation in the previous exercise, we have that
these tangent vectors are mapped to the matrices below, in the same order:

C =

0 0 0
0 0 1
0 −1 0

 , D =

 0 0 1
0 0 0
−1 0 0

 , E =

 0 1 0
−1 0 0
0 0 0

 .

♥

Exercise 12. Compute the commutators [C,D], [D,E] and [E,C] in Skew(3).
Determine the Lie derivatives LX(C)X(D), LX(D), X(E) and LX(E)X(C).

♠

Solution 12. This is just matrix multiplication. We get that [C,D] = E,
L[D,E] = C and [E,C] = D. Hence it follows from the formula above
(LX(C)X(D) = X([C,D])), that LX(C)X(D) = X(E), LX(D)X(E) = X(C)
and LX(E)X(C) = X(D). ♥

Remark. Given a basis for a Lie algebra (in thise case the algebra generated
by C,D,E), the expression of the commutator in terms of the other three
elements determine the structure constants of the Lie algebra. They are the
coefficients of [C,D] (etc.) as a linear combination of C,D,E.
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