Compute invariants using Macaulay2

Fredrik Meyer

April 27, 2015

We describe a recipe for finding invariant rings in Macaulay2 [2], using results from "Ideals, varieties and algorithms" [1].

1 Preliminaries

Suppose a matrix group G acts on a affine space \mathbb{A}^{n}, by actions fixing the origin. If $M \in \mathrm{GL}_{n}(k)$ acts on $P \in \mathbb{A}^{n}$ by $P \mapsto M P$, the corresponding action on the coordinate rings are given by $x_{i} \mapsto A^{T} x_{i}$.

Thus for example, if we look at C_{4}, rotating the plane by 90 degrees counterclockwise, that is

$$
P=\left(p_{1}, p_{2}\right)^{t} \mapsto\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(p_{1}, p_{2}\right)^{t},
$$

the corresponding k-algebra morphism is given by $x \mapsto-y$ and $y \mapsto x$.
We will return to this example in the next section.
Now, by definition, the invariants of $k\left[x_{1}, \ldots, x_{n}\right]$ are all the polynomials left unchanged by the action of G. It isn't even clear from the outset that the ring $k\left[x_{1}, \ldots, x_{n}\right]^{G}$ is finitely generated! Luckily this is true if G is a finite group, for example (or more generally, a linearly reductive group).

The crucial thing is the existence of the Reynolds operator. This is a linear map $k\left[x_{i}\right] \rightarrow k\left[k_{i}\right]$ which is a projection onto the G-invariants. It is given by "averaging":

$$
\begin{equation*}
R_{G}(f(x))=\frac{1}{|G|} \sum_{A \in G} f(A \cdot x)=\frac{1}{|G|} \sum_{A \in G} A \cdot f(x) . \tag{1}
\end{equation*}
$$

In fact, we have the following theorem of Emmy Noether:

Theorem 1.1. Let $G \subset \mathrm{GL}(n)$ be a finite matrix group. Let R_{G} be the Reynolds operator. Then we have

$$
k\left[x_{1}, \ldots, x_{n}\right]^{G}=k\left[R_{G}\left(x^{\beta}\right)| | \beta|\leq|G|]\right.
$$

This is the theorem needed to compute the ring of invariants. Note however that many monomials need to be computed. If G has order m then we need to compute the Reynolds operator $\binom{n+m}{m}$ times ${ }^{1}$. However, with computer, redundancy is never a problem in small examples.

2 Doing this

Since we have chosen to use Macaulay2, the first problem is how to represent a group. I've chosen to represent it as a list of ring maps $k\left[x_{i}\right] \rightarrow k\left[x_{i}\right]$.

Thus for the example of C_{4} acting on $k[x, y]$ can be represented in the following way:

```
r1 = map(R,R,{-y,x})
r2 = r1 * r1
r3 = r2 * r1
r4 = r3 * r1
G = {r1,r2,r3,r4}
```

The Reynolds operator can be coded as follows:

```
reynolds = method()
reynolds(RingElement, List) := (f,G) (
    card := #G;
    r = (sum apply(G, g -> g f))/card;
    r
    )
```

All monomials of degree less than $|G|$ can be found by basis $(1, m, R)$. We compute Reynolds on all monomials:

```
monomials = flatten entries basis(1,4,R)
rlist = unique apply(monomials, m -> reynolds(m,G))
```

We get four invariant polynomials:

[^0]

```
o33 = {0, -x + -y, -x + -y, -x y - -x*y , x y , - -x y + -x*y }
    2 2 2 2 2 2 % 2 llllll
o33 : List
```

Not all of them are necessary however. We can get a minimal presentation by the wonderful command minimalPresentation in Macaulay2.

We write this as follows:

```
S = QQ[z_0..z_(#rlist-1)]
phi = map(R,S, rlist)
A = S/ker phi
minimalPresentation A
```

The outut is the following:

```
i65 : minimalPresentation A
QQ[z , z , z ]
065 = ------------------
\begin{tabular}{c}
2 \\
\(2 z^{2} z-2 z^{2}\) \\
14
\end{tabular} \(4^{2}-2 z^{2} 5\)
065 : QuotientRing
```

This means that the invariant ring is generated by the second, fifth and sixth (counting starts at zero) element of the Reynolds list. These are:

```
i68 : {rlist#1,rlist#4,rlist#5}
    12 12 2 2 1 3 1 3
068 = {-x + -y, x y , - -x y + -x*y }
    2 2 2 2
```

Replacing with scalar multiples, we conclude that

$$
k[x, y]^{G}=k\left[x^{2}+y^{2}, x^{2} y^{2}, x^{3} y-x y^{3}\right]
$$

References

[1] David Cox, John Little, and Donal O'Shea. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer, New York, third edition, 2007. An introduction to computational algebraic geometry and commutative algebra.
[2] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

[^0]: ${ }^{1}$ This follows from the identity $\sum_{d=0}^{m}\binom{n+d}{d}=\binom{n+m+1}{m}$.

