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We describe a recipe for finding invariant rings in Macaulay2 [2], using
results from “Ideals, varieties and algorithms” [1].

1 Preliminaries

Suppose a matrix group G acts on a affine space An, by actions fixing the
origin. If M ∈ GLn(k) acts on P ∈ An by P 7→ MP , the corresponding
action on the coordinate rings are given by xi 7→ ATxi.

Thus for example, if we look at C4, rotating the plane by 90 degrees
counterclockwise, that is

P = (p1, p2)
t 7→

0 −1

1 0

 (p1, p2)
t,

the corresponding k-algebra morphism is given by x 7→ −y and y 7→ x.
We will return to this example in the next section.
Now, by definition, the invariants of k[x1, . . . , xn] are all the polynomials

left unchanged by the action of G. It isn’t even clear from the outset that
the ring k[x1, . . . , xn]G is finitely generated! Luckily this is true if G is a
finite group, for example (or more generally, a linearly reductive group).

The crucial thing is the existence of the Reynolds operator. This is a
linear map k[xi] → k[ki] which is a projection onto the G-invariants. It is
given by "averaging":

RG(f(x)) =
1

|G|
∑
A∈G

f(A · x) = 1

|G|
∑
A∈G

A · f(x). (1)

In fact, we have the following theorem of Emmy Noether:
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Theorem 1.1. Let G ⊂ GL(n) be a finite matrix group. Let RG be the
Reynolds operator. Then we have

k[x1, . . . , xn]
G = k[RG(x

β) | |β| ≤ |G|].

This is the theorem needed to compute the ring of invariants. Note
however that many monomials need to be computed. If G has order m then
we need to compute the Reynolds operator

(
n+m
m

)
times 1. However, with

computer, redundancy is never a problem in small examples.

2 Doing this

Since we have chosen to use Macaulay2, the first problem is how to represent
a group. I’ve chosen to represent it as a list of ring maps k[xi]→ k[xi].

Thus for the example of C4 acting on k[x, y] can be represented in the
following way:

r1 = map(R,R,{-y,x})
r2 = r1 * r1
r3 = r2 * r1
r4 = r3 * r1
G = {r1,r2,r3,r4}

The Reynolds operator can be coded as follows:

reynolds = method()
reynolds(RingElement, List) := (f,G) (

card := #G;
r = (sum apply(G, g -> g f))/card;
r
)

All monomials of degree less than |G| can be found by basis(1,m,R).
We compute Reynolds on all monomials:

monomials = flatten entries basis(1,4,R)
rlist = unique apply(monomials, m -> reynolds(m,G))

We get four invariant polynomials:

1This follows from the identity
∑m

d=0

(
n+d
d

)
=
(
n+m+1

m

)
.
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1 2 1 2 1 4 1 4 1 3 1 3 2 2 1 3 1 3
o33 = {0, -x + -y , -x + -y , -x y - -x*y , x y , - -x y + -x*y }

2 2 2 2 2 2 2 2

o33 : List

Not all of them are necessary however. We can get a minimal presentation
by the wonderful command minimalPresentation in Macaulay2.

We write this as follows:

S = QQ[z_0..z_(#rlist-1)]
phi = map(R,S, rlist)
A = S/ker phi
minimalPresentation A

The outut is the following:

i65 : minimalPresentation A

QQ[z , z , z ]
1 4 5

o65 = -----------------
2 2 2

2z z - 2z - 2z
1 4 4 5

o65 : QuotientRing

This means that the invariant ring is generated by the second, fifth and
sixth (counting starts at zero) element of the Reynolds list. These are:

i68 : {rlist#1,rlist#4,rlist#5}

1 2 1 2 2 2 1 3 1 3
o68 = {-x + -y , x y , - -x y + -x*y }

2 2 2 2

Replacing with scalar multiples, we conclude that

k[x, y]G = k[x2 + y2, x2y2, x3y − xy3].
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