
Computing quotients of finitely generated abelian
groups

Fredrik Meyer

April 25, 2016

Abstract

Say you are given an integer matrix A. This correspond to a map
Zr A−→ Zs, and the cokernel is a finitely-generated abelian group. How
do you see which one?

This is a short tutorial on how to do this in practice (with the help
of Python in large examples).

1 The problem

Say you are given an integer matrix A ∈ Mn×m(Z). This correspond to a
linear map from Zn to Zm. One often wants to compute the cokernel, which
measures the extent to which the map is not surjective. By definition the
cokernel is Zm/ imA.

It is not always easy to see what the cokernel should be. For example,
given the matrix

A =

1 2

3 4

 ,

is it obvious that the cokernel is Z/2? What would be nice, is if the matrix
were in a nicer form, such as

A′ =

1 2

0 2

 .

1



In this case, it is quite apparent that the image is Z⊕ 2 · (1, 1). We note
that we can change basis of Z2 by matrices in SL2(Z), and that the matrix

S =

1 −1

0 1


send the vectors (1, 0) and (1, 1) to (1, 0) and (0, 1). This shows that the
image of the previous matrix is SL2(Z)-equivalent to Z ⊕ 2Z. Hence the
quotient is Z/2.

It is a general fact that if the matrix is in upper diagonal form, then
one can read off the quotient from the diagonal entries, because basises
constructed from such matrices are always SL2(Z)-equivalent to the standard
basis.

Hence we would want a process to change basis such that the representing
matrix is in upper diagonal form. This is possible by performing row opera-
tions involving only elements of SL2(Z). This correspond to left-multiplying
the matrix A by an elementary matrix E, which again correspond to chang-
ing the basis of the target space.

Remark. By also allowing column operations, one can get the matrix on
diagonal form, but this is not necessary to read off the quotient (but it can
be useful to read off the kernel). By the way: note that the kernel is always
Zk for some k ≥ n: there is no torsion factor. This is because the kernel is
a subgroup of Zn, and Zn has no torsion.

2 The solution

Here we present an algorithm to transform a matrix A into what is some-
times called the (nonreduced) Hermite normal form of a matrix. We say
nonreduced, because it is possible to further simplify the matrix by similar
operations, but this is not necessary to spot the cokernel.

Below we present an algorithm. The given data is an integer matrix A.

1. Find the smallest non-zero entry a in the first column of A. By row
operations, move the corresponding row to the top. If there are no
such entries, proceed to step 3.

2. For each row not equal to the top row, let d be the greatest common
divisor of the first entry in this row (call this b) and a. Then there is
a relation xa + yb = d (Bezout), which can be used to eliminate this
entry (see example below for explanation). Repeat.

2



3. Now we do Step 1 with the submatrix obtained by removing the column
and leftmost row from A. In the end we get a 1 × 1-matrix, which is
the base case.

The second step is a bit vague because it is easier to explain with an
example. Consider the 2× 2-matrix

A =

12 2

18 5

 .

The greatest common divisor between 12 and 18 is 6, and we have a Bezout
relation 6 = 12 · (−1) + 18 · 1. Now consider the matrix

S =

−1 1

−3 2

 .

The first row are the coefficients in the Bezout relation, and the second are
a “divided Koszul relation”: it is 18/6 and 12/6. More generally, if we have
a matrix

A =

a b

c d

 ,

then let D = xa+ yc be a Bezout relation. Then form the matrix

S =

 x y

−c/D a/D

 .

Then SA is D bx+ dy

0 (ad− bc)/D

 .

Note that S has determinant 1 by construction. This generalizes to larger
matrices, except that it’s harder to keep track of indices.

By repeated application of this process, we get a upper diagonal matrix.
Then, as noted above, the cokernel can be read off as Z/d1⊕ . . .⊕Z/dm.

3



3 Implementation in Python

It is possible to work with matrices in the numpy library in Python, but it
uses only floating point numbers. Since we are working with matrices over
the integers, we implement our own matrix class instead. The code for the
implementation is in the Appendix A.

Here is the code for the Python function taking an integer matrix as
input, and returning a upper diagonal form.

The implementation is recursive, starting with the base case of a 1 × 1-
matrix.

def triangular(M):
’’’
Input: an integer matrix M.
Output: an upper triangulization

U of M over the integers.
’’’
if len(M.L) == 1:

if M.L[0][0] < 0:
return -M

return M
(index , smallest) = (0,M.L[0][0])
for i in range(len(M.L)):

if abs(M.L[i][0]) < smallest:
(index , smallest) = (i,M.L[i][0])

if smallest == 0:
return concat(M,triangular(submatrix(M)))

if index != 0:
N = M.switchRows (0,index)

else:
N = Matrix(M.L)

for i in range(1,len(M.L)):
d = ntheory.gcd(smallest , N.L[i][0])
bez = ntheory.bezout(smallest , N.L[i][0])
I = identity(len(N.L))
I.L[0][0] = bez[0]
I.L[0][i] = bez[1]
I.L[i][0] = N.L[i][0]/d
I.L[i][i] = -N.L[0][0]/d
N = I * N

4



if N.L[0][0] < 0:
N = N.mult(-1)

return concat(N,triangular(submatrix(N)))

Try to compare what the function does with the algorithm above. Here
is an example output of the above function:

>>> M = Matrix ([[1,2,3],[4,5,6],[7,8,9]])
>>> print M
3x3-matrix: [1, 2, 3]

[4, 5, 6]
[7, 8, 9].

>>> print triangular(M)
3x3-matrix: [1, 2, 3]

[0, 3, 6]
[0, 0, 0].

Hence the cokernel in this case is Z/3⊕ Z.

A Implementation of integer matrices in Python

Note that many functions are not yet written. Perhaps it is better to just
Google my git account for more readable code.

import ntheory
from operator import mul

class Matrix:
"""
Construct a matrix object from a double list.
"""
def __init__(self , L):

self.L = L
self.m = len(L[0]) # number of columns
self.n = len(L) # number of rows

def checkFormat(self ,L):
’’’
To be written. Checks if the matrix is
well -defined.
’’’
return True

5



def __add__(self ,M):
’’’
Returns the sum of self and M.
’’’
newL = []
for r in range(self.m):

row = [self.L[r][i] + M.L[r][i]
for i in range(self.n)]

newL += [row]
return Matrix(newL)

def __sub__(self ,N):
return (self + (-N))

def __neg__(self):
newL = [[-r for r in R] for R in self.L]
return Matrix(newL)

def __mul__(self ,N):
’’’
Returns the product of self and N.
’’’
NT = N.transpose ()
newL = []
for i in range(self.n):

newR = []
for j in range(N.m):

newR += [sum([self.L[i][k]*NT.L[j][k]
for k in range(self.m)])]

newL += [newR]
return Matrix(newL)

def transpose(self):
’’’
Returns the transpose of self.
’’’
newL = [[] for i in range(self.m)]
for i in range(len(self.L)):

for j in range(self.m):

6



newL[j] += [self.L[i][j]]
return Matrix(newL)

def trace(self):
’’’
If self is square , return trace.
’’’
if self.n != self.m:

return "NOT SQUARE"
return sum([self.L[i][i]

for i in range(self.n)])

def mult(self ,c):
newL = [[c*r for r in R] for R in self.L]
return Matrix(newL)

def switchRows(self ,i,j):
’’’
Returns the matrix obtained by
switching rows i,j in self.
Counting starts at 0.
’’’
newL = list(self.L)
newL[i], newL[j] = newL[j], newL[i]
return Matrix(newL)

def multRow(self ,i,c = -1):
’’’
Multiplies row i with c. (plus minus 1)
’’’
newL = list(self.L)
newL[i] = [c*r for r in newL[i]]
return Matrix(newL)

def addRow(self ,i,j,a=1):
’’’
Adds a times row j to row i.
’’’
newL = list(self.L)
rowj = list(self.L[j])

7



newL[i] = [self.L[i][j]+a*rowj[j]
for j in range(len(rowj ))]

return Matrix(newL)

def _prodDiagonal(self):
return reduce(mul ,[self.L[i][i]

for i in range(len(self.L))],1)

def det(self):
return triangular(self). _prodDiagonal ()

def __str__(self):
s = "{0}x{1}- matrix: ".format(self.m,self.n)

+ str(self.L[0]) + "\n"
for row in self.L[1:]:

s+= 12*" " + str(row) + "\n"
return s[:-1] + "."

def identity(n):
L = []
for i in range(n):

L += [[int(j == i) for j in range(n)]]
return Matrix(L)

def concat(M,N):
’’’
Input: M nxm matrix.

N n-1 x m-1 matrix.
Output: A new matrix with Q with N the
submatrix obtained by removing first col and row.
’’’

L = [M.L[0]]
for i in range(1,len(M.L)):

R = [M.L[i][0]]
for j in range(len(N.L[0])):

R += [N.L[i-1][j]]
L += [R]

return Matrix(L)

8



def submatrix(M,c=0,r=0):
’’’
The submatrix obtained by removing col c and row r.
’’’
L = []
for i in range(len(M.L)):

if i != r:
R = []
for j in range(len(M.L[0])):

if j != c:
R += [M.L[i][j]]

L += [R]
return Matrix(L)

9


	The problem
	The solution
	Implementation in Python
	Implementation of integer matrices in Python

