
Exercises

Fredrik Meyer

April 22, 2015

Contents

1 Algebra - Serge Lang 2
1.1 Chapter V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Algebraic Geometry - Hartshorne 4
2.1 Chapter I - Varieties . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Chapter II - Schemes . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Chapter III - Cohomology . . . . . . . . . . . . . . . . . . . . 11
2.4 Chapter IV - Curves . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Chapter V - Surfaces . . . . . . . . . . . . . . . . . . . . . . . 13

3 Categories for the working mathematician - Saunders MacLane 14
3.1 Chapter 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Calculus on Manifolds - Spivak 14
4.1 Functions on Euclidean Space . . . . . . . . . . . . . . . . . . 14

5 Commutative Algebra - Eisenbud 15
5.1 Chapter 16 - Modules of Differentials . . . . . . . . . . . . . . 15

6 Deformation Theory - Hartshorne 15
6.1 Chapter I.3 - The T i functors . . . . . . . . . . . . . . . . . . 15

7 Geometry of differential forms - Morita 18
7.1 Chapter 1 - Manifolds . . . . . . . . . . . . . . . . . . . . . . 18

8 Introduction to Differential Geometry - Spivak 20
8.1 Chapter 1 - Manifolds . . . . . . . . . . . . . . . . . . . . . . 20
8.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



9 Introduction to Commutative Algebra - Atiyah-MacDonald 24
9.1 Chapter 1 - Rings and ideals . . . . . . . . . . . . . . . . . . . 24
9.2 Chapter 2 - Modules . . . . . . . . . . . . . . . . . . . . . . . 28
9.3 Chapter III - Rings and modules of fractions . . . . . . . . . . 30
9.4 Chapter 5 - Integral dependence and valuations . . . . . . . . 30
9.5 Chapter 7 - Noetherian rings . . . . . . . . . . . . . . . . . . 31

10 The K-book - Charles Weibel 33
10.0.1 Chapter 1.1 - Free modules, GLn and stably free modules 33

10.1 Chapter 1.2 - Projective modules . . . . . . . . . . . . . . . . 34

11 Representation Theory - Fulton, Harris 34
11.1 Representations of Finite Groups . . . . . . . . . . . . . . . . 34
11.2 Chapter 7 - Lie groups . . . . . . . . . . . . . . . . . . . . . . 38
11.3 Lecture 8 - Lie Algebras and Lie groups . . . . . . . . . . . . 39

12 Twenty-Four Hours of Local Cohomology 40
12.1 Lecture 1 - Basic notions . . . . . . . . . . . . . . . . . . . . . 40

13 Riemannian geometry - Do Carmo 40
13.1 Chapter 0 - Differentiable manifolds . . . . . . . . . . . . . . 40
13.2 Chapter 2 - Affine and Riemannian connections . . . . . . . . 41

1 Algebra - Serge Lang

1.1 Chapter V

Exercise 1. Let E = Q(α), where α is a root of the equation

α3 + α2 + α+ 2 = 0.

Express (α2 + α+ 1)(α2 + α) and (α− 1)−1 in the form

aα2 + bα+ c

with a, b, c ∈ Q. ♠
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Solution 1. Note that α3 = −α2 − α− 2 and α2 + α+ 1 = α3−1
α−1 (it is the

beginning of a geometric series). Then

(α2 + α+ 1)(α2 + α) = α(α2 + α+ 1)(α+ 1)

= α

(
α3 − 1

α− 1

)
(α+ 1)

= α

(
−α2 − α− 3

α− 1

)
(α+ 1)

= −
(
α3 + α2 + 3α

α− 1

)
(α+ 1)

= −
(
−α2 − α− 2 + α2 + 3α

α− 1

)
(α+ 1)

= −
(

2α− 2

α− 1

)
(α+ 1)

= −2α− 2.

For (α− 1)−1, let
1

α− 1
= aα2 + bα+ c.

Then multiplaying on both sides and using that 1, α, α2 are linearly inde-
pendent over Q, we equate coefficients, and get

(α− 1)−1 = −1

6
α2 − 1

3
α− 1

2
.

♥

Exercise 2. Let E = F (α) where α is algebraic over F of odd degree. Show
that E = F (α2). ♠

Solution 2. Cleary F (α2) ⊂ F (α). It will be enough to show α ∈ F (α2).
If α 6∈ F (α2), the extension F (α)/F (α2) must have degree 2 because α is

a zero of X2−α2. Then [F (α) : F ] = [F (α) : F (α2)][F (α2) : F ] = 2[F (α2) :
F ]. ♥

Exercise 3. Let α, β be two elements which are algebraic over F . Let
f(X) = Irr(α, F,X) and g(X) = Irr(β, F,X). Suppose that deg f and
deg g are relatively prime. Show that g is irreducible in the polynomial
ring F (α)[X]. ♠
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Solution 3. Consider the tower of fields F ⊂ F (α) ⊂ F (α, β). Then
[F (α, β) : F ] = deg f · n ≤ deg f · deg g, by the same argument as in the
proof of Proposition 1.2. Similarly [F (α, β) : F ] = deg g ·m ≤ deg f · deg g.
But then

deg f

deg g
=
m

n
.

But deg f and deg g are relatively prime, and, and we must have m ≤ deg f
and n ≤ degg. This forces m = degf and n = deg g, and hence [F (α, β) :
F (α)] = deg g and [F (α, β) : F (β)] = deg f .

Now, if g were reducible in F (α)[X], we would have [F (α, β) : F ] <
deg f deg g. But we don’t. ♥

2 Algebraic Geometry - Hartshorne

2.1 Chapter I - Varieties

Exercise 4 (Exercise 1.1). a) Let Y be the plane curve y = x2. Show that
A(Y ) is isomorphic to a polynomial ring in one variable over k.

b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a
polynomial ring in one variable over k.

c) Let f be any irreducible quadratic polynomial in k[x, y], and let W be
the conic defined by f . Show that A(W ) is isomorphic to A(Y ) or A(Z).
Which one is it when?

♠

Solution 4. a) We have A(Y ) = k[x, y]/(y−x2). An isomorphism A(Y )→
k[t] is given by x 7→ t and y 7→ t2.

b) We have A(Z) = k[x, y]/(xy − 1) ' k[x, 1x ]. So we must show that
k[x, 1x ] 6≈ k[x]. It can be computed that the first one has automorphisms
given by x 7→ cxn for c nonzero and n 6= 0. The second has as automor-
phisms ax + b (a 6= 0). So the first one have an abelian automorphism
group, the second has not.

c) What is special about A(Y ) and A(Z)? Staring at pictures, we see that
any line in A2 intersects Y in at least one point, but in the case of Z,
there exist two lines which do not intersect Z. We claim that this is the
only two things that can happen.

First we claim that if we are in the second situation, that is, if there exist
a pair of lines `, `′ such that W ∩ ` = W ∩ `′ = ∅, then W ' Z.
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A general quadric can be written as

ax2 + bxy + cy2 + dx+ ey + f = 0.

Suppose now ` ∩W = ∅. This is equivalent to I(f, `∨) = (1). Without
loss of generality, we can assumme ` = {x = 0}. Then

I(f, `) = (cy2 + ey + f, x).

This generates k[x, y] if and only if c = e = 0 and f 6= 0. Thus f must
be of the form

ax2 + bxy + dx+ f = 0

with f 6= 0. But this can be written as

x(ax+ by + d) + f = 0.

Put y′ = ax + by + d. Then I(W ) takes the form (xy′ + f = 0), which
is clearly isomorphic to Z after a linear change of coordinates. Note that
the other line not meeting W is the line given by y′ = ax+ by + d = 0.

Assume now that we are in the other situation, namely that every line in
A2 meets W . Now pick a tangent line ` of W . Without loss of generality,
we can assume that ` is {y = 0}. This is a tangent line if and only if
it meets W doubly, meaning that I(W ) + (`∨) takes the form (l2, y) for
some linear form l. We can also assume that ` ∩ W = (0, 0), so that
I(W ) + (`∨) = (x2, y). But this means that

I(W ) + I(`) = (ax2 + bxy + cy2 + dx+ ey + f, y)

= (ax2 + dx+ f, y)

We want ax2 + dx + f = x2. This can happen only if d = f = 0 and
a 6= 0. Thus the quadric takes the form

ax2 + bxy + cy2 + ey = 0.

Now we claim that there exist one line at each point of W that intersect
W transversally in exactly one point. This is the case for Y . Consider
the pencil of lines through (0, 0) defined by x = λy. We want to find λ
such that the intersection is transversal and only one point. We have

(ax2 + bxy + cy2 + ey, x− λy) =
(
(aλ2 + bλ+ c)y2 + ey, x− λy

)
.

This have exactly one solution if and only if aλ2 + bλ + c = 0. This is
solvable since a 6= 0 and since all lines intersect W . Thus choose λ as
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above. We can rotate this line such that it becomes x = 0. Then the
equation takes the form

ax2 + bxy + ey = 0.

We have still not arrived at y = x2. Let now y = λx be a general line
through the origin. We demand that this intersect W twice for every λ
such that the line is not tangent. We get that the intersection is given by

ax2 + bλx+ ex = x((a+ λb)x+ e) = 0.

For this to have two solutions for every λ we must have a+λb 6= 0 for all
λ. But this requires b = 0. Thus the equation is

ax2 + ey = 0

which is the conic we were looking for.
♥

Exercise 5 (Exercise 1.2, the twisted cubic curve). Let Y ⊆ A3 be the set
{(t, t2, t3) | t ∈ k}. Show that Y is an affine variety of dimension 1. Find
generators for the ideal I(Y ). Show that A(Y ) is isomorphic to a polynomial
ring in one variable over k. We say that Y is given by the parametric equation
x = t, y = t2, z = t3. ♠

Solution 5. An affine variety is by definition a closed irreducible subset of
A3. So we must find an irreducible ideal I such that Z(I) = Y (forgive the
abuse of notation).

I claim that I(Y ) = 〈x2− y, x3− z〉. Clearly, every P ∈ Y satisfies these
equations. This shows the inclusion Y ⊂ Z(I). Now suppose P ∈ Z(I), that
is, f(P ) = 0 for all f ∈ I. In particular (x2−y)(P ) = 0 and (x3−z)(P ) = 0.
Thus y = x2 and z = x3. So if P = (a, b, c) ∈ k3, then P = (a, a2, a3), so
P ∈ Y . This shows that Z(I) = Y . If we can show that I is prime, then it
follows that I(Y ) = I and that Y is a variety.

In fact, we claim that k[x, y, z]/I ' k[t], implying that I is prime. The
map ϕ is given by x 7→ t, y 7→ t2, z 7→ t3. Then clearly I ⊆ kerϕ. We must
show equality. So suppose ϕ(f) = 0.

First we claim that any f ∈ k[x, y, z] can be written as f = R(x) +
S(x)y + T (x)z + i(x, y, z) where i is a polynomial in I. We prove this by
induction on deg f . If deg f = 1, this is trivially true. The rest of the proof
proceeds by tedious induction. ♥
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2.2 Chapter II - Schemes

Exercise 6 (Exercise 1.2). a) For any morphism of sheaves ϕ : F → G ,
show that for each point P , (kerϕ)P = ker(ϕP ) and (imϕ)P = im(ϕP ).

b) Show that ϕ is injective (resp. surjective) if and only if the induced map
on the stalks ϕP is injective (resp. surjective) for all P .

c) Show that a sequence . . .F i−1 ϕi−1

−−−→ F i ϕi

−→ F i+1 → . . . of sheaves and
morphisms is exact if and only if for each P ∈ X, the corresponding
sequence of stalks is exact as a sequence of abelian groups.

♠

Solution 6. a) An element of (kerϕ)P is represented by a pair (U, f) with
f ∈ F (U) satisfying ϕ(U)(f) = 0. We have (U, f) ' (V, g) if there is a
neighbourhood W of p contained in U ∩ V such that f

∣∣
W

= g
∣∣
W

(then
automatically ϕ(W )(f) = 0, since ϕ(W ) = ϕ(U)

∣∣
W
).

On the other hand, an element of kerϕP is represented by a pair (U, f)
satisfying the same conditions.

A similar argument works for imϕ. Alternatively, one can show that
finite limits commute with direct limits.

b) Suppose ϕ : F → G is injective. Then by definition all ϕ(U) : F (U) →
G (U) are injective, hence (kerϕ)P = kerϕP = 0, hence ϕP is injective.
Suppose ϕ : F → G is surjective. By definition, this means that imϕ =
G , hence GP = (imϕ)P = imϕP , so the stalks are surjective.

c) Exactness means that kerϕi = imϕi−1. Taking stalks, gives one im-
plication. Assume that the stalks are exact. Then the same argument
works.

♥

Exercise 7. a) Let ϕ : F → G be a morphism of presheaves such that
ϕ(U) : F (U) → G (U) is injective for each U . Show that the induced
map ϕ+ : F+ → G+ of associated sheaves is injective.

b) Use part a) to show that if ϕ : F → G is a morphism of sheaves, then
imϕ can be naturally identified with a subsheaf of G , as mentioned in
the text.

♠
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Solution 7. a) From the universal property of the sheafification functor,
we have a commutative square:

F
ϕ //

θ
��

G

θ
��

F+ ∃! // G+

The lower arrow follows from the universal property of sheafification ap-
plied to θ ◦ ϕ. Taking stalks induced the identity map on the vertical
arrows, and since a map is injective if it is injective on stalks, the state-
ment follows.

b) imϕ is the sheafification of (imϕ)pre(U) = {U 7→ ϕ(U)}. We have
imϕ(U) ⊂ G (U) for all U , hence imϕP ⊂ GP for all P , hence imϕ→ G
is injective.

♥

Exercise 8 (Exercise 1.14, Support). Let F be a sheaf on X, and let s ∈
F (U) be a section over an open set U . The support of s denoted Supp(s),
is defined to be the set {P ∈ U | sP 6= 0} where sP denotes the germ of s
in the stalk sP . Show that Supp(s) is a closed subset of U . We define the
support of F by Supp F to be {P ∈ X | FP 6= 0}. It need not be a closed
subset. ♠

Solution 8. Showing that Supp(s) is closed is equivalent to showing that the
complement is open. So let P ∈ X\ Supp(s). Then sP = 0. But every germ
is represented by a pair (s, U) (with (s′, U ′) ' (s, U) if s

∣∣
W

= s′
∣∣
W

for some
open W ⊂ U ∩U ′). But since sP = 0, there must be some neighbourhood U
such that sP is represented by s = 0, hence X\Supp(s) can be covered by
those open U ’s.

To see that Supp F need not be closed, let X = A1
k with k an infinite

field. Let Z be the constant sheaf and let L be the direct sum of infinitely
many skyscraper sheaves, but not everyone. Let F /L be the quotient. This
has support on the infinitely many points chosen, which is not closed. ♥

Exercise 9 (Exercise 1.16, Flabby/flasque sheaves). A sheaf F on a topo-
logical spaceX is flasque (flabby) if for every inclusion U ⊆ V , the restriction
map F (U)→ F (V ) is surjective.

a) Show that a constant sheaf on an irreducible topological space is flasque.
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b) If 0→ F ′ → F → F ′′ → 0 is an exact sequence of sheaves, and if F ′ is
flabby, then for any open set U , the sequence

0→ F ′(U)→ F (U)→ F ′′(U)→ 0

is exact.

c) Same as above, but suppose F ′ and F are flabby. Show that F ′′ is
flabby.

d) If f : X → Y is a continous map, and F is a flabby sheaf on X, then
f∗F is flabby on Y .

e) Let F be any sheaf on X. We define a new sheaf G , called the sheaf
of discontinous sections of F , as follows: For each open set U ⊂ X,
G (U) is the set of maps s : U → ∪P∈U FP , such that for all P ∈ U ,
s(P ) ∈ FP . Show that G is a flabby sheaf, and that there is a natural
injective morphism from F to G .

♠

Solution 9. a) Every open set in X is irreducible and dense, and dense sets
are connected. Hence a constant sheaf is actually constant, and all the
restriction maps are identities (except if one of them is the empty set).

b) The sheaf axiom for a sheaf F is equivalent to the following: for every
covering {Ui} of U , the following sequence is exact:

0→ F (U)→
∏
i

F (Ui)→
∏
ij

F (Uij),

where Uij = Ui ∩ Uj . The first map sends a section s to the product of
all its restrictions, and the second map sends (si) 7→ (si − sj)ij∈I×I .
Since the sequence of sheaves in the exercise is exact, for small enough Ui,
the sequence 0→ F ′(Ui)→ F (Ui)→ F ′′(Ui)→ 0 is exact (for sheaves,
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exactness is a local property). Hence we can form the following diagram:

0

��

0

��

0

��
0 // F ′(U) //

��

F (U) //

��

F ′′(U)

��
0 //

∏
i F
′(Ui) //

f

��

∏
i F (Ui) //

��

∏
i F
′′(Ui) //

��

0

0 //
∏
ij F ′(Uij) //

��

∏
ij F (Uij) //

∏
ij F ′′(Uij) // 0

cokerf

Hm! If f was surjective, we could apply the snake lemma!! But f is not
surjective. (...) All proofs I’ve found use Zorns lemma...

c) Use the same diagram. The middle column is surjective at the bottom,
and by commutativity, the right column must be as well.

d) This is obvious, since f∗F (V ) = F (f−1(V )).

e) It is clear that G is a sheaf. If U ⊂ V , let s ∈ G (U) be given. Then
define s′ ∈ G(V ) as follows: s′(P ) = s(P ) if P ∈ U and zero elsewhere.
This element will be sent to s.

The injective morphism from F to G is defined as follows: send s ∈ F (U)
to the function s(P ) = sP in G (U).

♥

Exercise 10 (Exercise 2.19). Let A be a ring. The following are equivalent:

1. SpecA is disconnected.

2. There exists nonzero elements e1, e2 ∈ A such that e1e2 = 0, e21 = e1,
e22 = e2 and e1 + e2 = 1 (these are called orthogonal idempotents).

3. A is isomorphic to a direct product A1 ×A2 of two nonzero rings.

♠
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Solution 10. 1 ⇒ 3: Let U be a nonempty connected compontent of X =
SpecA. Let V = X\U be its complement, and let i1 : U → X and i2 = V →
X be the natural inclusions on topological spaces. This can be extended to
a map of schemes as well: we need to give a morphism f# : OX → f∗OU .
But f∗OU (W ) = OX(W ∩ U), so f∗OU = OX

∣∣
U
. Hence we just choose

f$ : OX → OU to be the natural map provided by the sheaf axioms.
We now have two morphisms i1 : U → X and i2 : V → X which are

closed immersions, hence the induced ring morphisms A→ A1 and A→ A2

are surjective. Also, the universal property for products hold because the
universal property for coproducts hold in the category of affine schemes.
Hence A ' A1 ×A2. (a bit clumsy??)

2 ⇒ 3: Let πi : A → A be given by multiplication by ei and let Ai be
its image. Then kerπ1 = A2, because if e1f then f = e2f , so f ∈ A2. The
splitting maps are the natural inclusions.

3⇒ 2: If A = A1 ×A2, let ei = πi(1).
3⇒ 1: Similar to the first argument, just opposite.

♥

Exercise 11 (Excercise 7.1). Let (X,OX) be a locally ringed space and let
f : L →M be a surjective map of invertible sheaves on X. Show that f is
an isomorphism. ♠

Solution 11. Since L ,M are invertible, we have isomorphisms Lx ≈ OX,x

and Mx ≈ OX,x for each x ∈ X.
But HomOX,x

(OX,x,OX,x) = OX,x, that is, all homomorphisms are given
by multiplication by some h ∈ OX,x. But since f was surjective, we conclude
that h is outside mx, the maximal ideal of OX,x. But then h is a unit, so f
is an isomorphism. ♥

2.3 Chapter III - Cohomology

Exercise 12 (Exercise 2.1). a) Let X = A1
k be the affine line over an in-

finite field k. Let P,Q be distinct closed points on X and let U =
X − {P,Q}. Show that H1(X,ZU ) 6= 0.

♠

Solution 12. a) We have an exact sequence

0→ ZU → Z→ i∗(Z
∣∣
Z

)→ 0,

where Z = P ∪Q. The last sheaf is equal to the skyscraper sheaf ZP⊕ZQ.
Since Z is flabby, we have H1(X,Z) = 0. Hence the long exact sequence

11



reads
0→ Z→ Z→ Z⊕ Z→ H1(ZU )→ 0.

It follows that H1(ZU ) = Z2. In fact, this should please us, because if
k = C, we have that U is the complex plane minus two points, which is
homotopic to the figure eight, which indeed have H1

sing(U,C) = C2.
♥

Exercise 13 (Exercise 4.3). Let X = A2
k = Spec k[x, y] and let U =

X\{(0, 0)}. Use a suitable open cover of X by open affine subsets to show
that H1(U,OU ) is isomorphic to the k-vector space spanned by {xiyj | i, j <
0}. In particular, it is infinitedimensional, and so U cannot be affine (not
projective either). ♠

Solution 13. We can cover U by U1 = A2\{x = 0} and U2 = A2\{y = 0}.
We have U1 ∩ U2 = A2\{xy = 0}. Also, O(U1) = k[x, y, 1x ] and O(U2) =
k[x, y, 1y ] and O(U1 ∩ U2) = k[x, y, 1

xy ]. Then the Čech complex takes the
form

0→ k[x, y,
1

x
]× k[x, y,

1

y
]
d−→ k[x, y,

1

xy
]→ 0,

the differential being difference. Then H1(U,OU ) can be computed as the
homology at the second term. But nothing on the left side can hit anything
of the form xiyj with i, j < 0. Anything else is hit. Thus we have

H1(U,OU ) ' {xiyj | i, j < 0}

as k-vector spaces. ♥

Exercise 14 (Exercise 4.7). Let X be the subscheme of P2
k defined by a

single homogeneous polynomial f(x0, x1, x2) = 0 of degree d. Assume that
(1, 0, 0) is not on X. Then show that X can be covered by the two open
affine subsets U = X ∩ {x1 6= 0} and V = X ∩ {x2 6= 0}. Now calculate the
Čech complex

Γ(U,OX)⊕ Γ(V,OX)→ Γ(U ∩ V,OX)

explicitly, and thus show that

dimkH
0(X,OX) = 1

dimkH
1(X,OX) =

1

2
(d− 1)(d− 2).

♠
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Solution 14. X can be covered by just two open affines since P2\(U ∪V ) =
{(1 : 0 : 0)}, which was assumed not to lie on the curve.

The open affine subset Γ(U,OX) can be identified with the polynomial
ring k[u, v]/〈f(u, 1, v)〉, and Γ(V,OX) = k[x, y]/f(x, y, 1). The differential
is then given by

(g(u, v), h(x, y)) 7→ g(xy−1, y−1)− h(x, y) ∈ k[x, y,
1

y
].

We can assume that f = xd0, since what really matters is the degree, and
we are just doing linear algebra.

We first calculate H0(X,OX). So suppose g(xy−1, y−1)− h(x, y) = 0 in
k[x, y, y−1]/〈f(x, y, 1)〉. By definition this means that

g(xy−1, y−1)− h(x, y) = f(x, y, 1) · f̃(x, y,
1

y
)

for some polynomial f̃ . Write f̃ as f̃0 + f̃1, where f̃0 =
∑

j<0 aijx
iyj and

f̃1 ∈ k[x, y]. Then we have the equality

g(xy−1, y−1)− h(x, y) =
∑
j<0

aijx
i+dyj +

∑
j≥0

xi+dyj .

First of all, we see that the constant terms of g and h must be equal,
because there are no constant terms on the right hand side. Secondly,
g(xy−1, y−1) consists solely of terms with j < 0. Thus the non constant
terms of g(xy−1, y−1) must be equal to the left term of the right hand side
above. But both terms of the right hand side are zero modulo f , so the con-
stant terms of g(xy−1, y−1) are also zero mod f . The same holds for h(x, y).
Thus H0(X,OX) = {(c, c) | c ∈ k} ' k.

Now we compute H1(X,OX). Consider a monomial xiyj in the tar-
get. If both i, j ≥ 0, then it is hit by (0,−xiyj). Likewise, if j ≥ i, then
(xiyj−i, 0) 7→ xix−j . Thus all monomials xiy−j with j ≥ i is zero in the
cokernel. Further, if i ≥ d, then xiyj is already zero! Thus, we can draw
the non-zero monomials in the cokernel as points in the lattice Z2. This is a
triangle of length d− 2. Thus the dimension of H1(X,OX) is

1 + 2 + . . .+ d− 3 + d− 2 =
1

2
(d− 2)(d− 2 + 1) =

1

2
(d− 2)(d− 1).

♥
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2.4 Chapter IV - Curves

Exercise 15 (Exercise 1.1). Let X be a curve and P ∈ X a point. Show
that there exists a nonconstant rational function f ∈ K(X) which is regular
everywhere except at P . ♠

Solution 15. Let D be the divisor D = nP . The linear system

{E = D + f ≥ 0}

consists of all divisors linearly equivalent to D. But these are classified by
those f with (f) ≥ −nP , i.e. those f with at most poles of order n at P .

By Riemann-Roch we have

l(D)− l(K −D) = degD + 1− g = n+ 1− g.

If n is large enough, K−D will have negative degree, so l(K−D) = 0. Thus
for large n, we can get l(D) as big as we want.

♥

2.5 Chapter V - Surfaces

Exercise 16 (Exercise 1.1). Let C,D be any two divisors on a surface X,
and let the corresponding invertible sheaves be L ,M . Show that

C.D = χ(OX)− χ(L −1)− χ(M−1) + χ(L −1 ⊗M−1).

♠

Solution 16. We have an exact sequence

0→ L −1 → OX → OC → 0,

and similarly with L and C replaces by M and D, from which we obtain
that χ(OC) = χ(OX)−χ(L−1). We want to use the equality C.D = χ(OC)−
χ(L (−D)⊗ OC) in the proof of Proposition 1.4.

Using what we’ve found, we have

C.D = −χ(L −1) + χ(OC∩D).

Using the exact sequences

0→M−1 ⊗ OC → OC → OC∩D → 0

and
0→M−1 ⊗L −1 →M−1 →M−1 ⊗L −1 → 0,

together with additivty of Euler characteristics, we obtain the desired result.
♥
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3 Categories for the working mathematician - Saun-
ders MacLane

3.1 Chapter 1.1

Exercise 17 (1.1). Show that each of the following constructions can be
regarded as a functor: The field of quotiens of an integral domain; the Lie
algebra of a Lie group. ♠

Solution 17. The first is a functor Rings → Fields, since "obviously" the
assignment R 7→ K(R) is functorial, since a morphism is determined by what
it does to elements of R.

The second is a functor from the category of Lie groups to the category
of Lie algebrasÅ ♥

4 Calculus on Manifolds - Spivak

4.1 Functions on Euclidean Space

Exercise 18 (Exercise 1.1). Prove that |x| ≤
∑n

i=1|xi|. ♠

Solution 18. By induction, one can prove that
√∑

i ai ≤
∑

i

√
ai. The

claim then follows trivially. ♥

Exercise 19 (Exercise 1.7). A linear transformation T : Rn → Rn is norm
preserving if |T (x)| = |x| for all x ∈ Rn. It is inner product preserving if
〈Tx, Ty〉 = 〈x, y〉y.

a) Prove that T is norm preserving if and only if it is inner product preserv-
ing.

b) Prove that such a linear transformation is 1 − 1 and T−1 is of the same
sort.

♠

Solution 19. a). The direction⇐ is trivial. For the other direction, choose a
basis {x1, . . . , xn} of Rn such that x = x1 and y =

∑
aixi. Then 〈Tx, aixi〉 =

ai〈Tx, xi〉 = 0 if i 6= 1 and a1 else. Then since T (0) = 0 it follows that

〈Tx, Ty〉 = 〈Tx, T (a1x1)〉 = a1〈Tx1, Tx1〉 = a1|Tx1|2 = a1|x1|2 = a1〈x1, x1〉.

b). Suppose T (x) = 0. Then 0 = 〈Tx, Tx〉 = 〈x, x〉, but this hap-
pens if and only if x = 0. Also 〈T−1y, T−1y〉 = 〈T−1T (x), T−1T (x)〉 =
〈TT−1(x), TT−1(x)〉 = 〈T−1x, T−1x〉 = 〈y, y〉. ♥
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5 Commutative Algebra - Eisenbud

5.1 Chapter 16 - Modules of Differentials

Exercise 20 (Exercise 16.1). Show that if b ∈ S is an idempotent (b2 = b),
and d : S →M is any derivation, then db = 0. ♠

Solution 20. This is trivial. db = d(b2) = 2db. If 2 = 0, then the statement
is automatically true. If not, then db = 0 by subtraction. ♥

6 Deformation Theory - Hartshorne

6.1 Chapter I.3 - The T i functors

Exercise 21 (Exercise 3.1). Let B = k[x, y](xy). Show that T 1(B/k,M) =
M ⊗ k and T 2(B/k,M) = 0 for any B-module M . ♠

Solution 21. Since B is defined by a principal ideal in P = k[x, y], it follows
that L2 = 0 in the cotangent complex. Thus T 2(B/k,M) is automatically
zero.

We have that L1 = B and L0 = Bdx⊕Bdy with d1 being f 7→ (fy, fx).
Applying Hom(−,M), we get Hom(L0,M) = M⊕M and Hom(L1,M) = M .

We have Hom(B ⊕B,M) 'M ⊕M by φ 7→ (φ(1, 0), φ(0, 1). We have a
diagram

Hom(B ⊕B,M)

'
��

ψ∗ // Hom(B,M)

'
��

M ⊕M //M

Under these isomorphisms, it is easy to see that the bottom map is given by

(φ(1, 0), φ(0, 1)) 7→ yφ(1, 0) + xφ(0, 1).

Thus since T 1 is the cokernel of this map, we must have T 1(B/k,M) =
M ⊗ k. ♥

Exercise 22 (Exercise 3.3). LetB = k[x, y]/(x2, xy, y2). Show that T 0(B/k,B) =
k4, T 1(B/k,B) = k4 and T 2(B/k,B) = k. ♠
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Solution 22. Let’s compute L2 first. For that we need part of a resolution
of I. We have in fact

0→ im


−y 0

x −y

0 x

→ P (−2)3 → I → 0.

The Koszul relations are given by

im


−y2 −xy 0

0 x2 −y2

x2 0 xy

 .

Let’s compute Q/F0 (relations modulo Koszul relations). Since Q is gener-
ated in degree 3, and F0 is of degree 4, we have dimk(Q/F0)3 = 2. Let’s
consider degree 4. As a k-vector space Q4 is spanned by the four elements

−y2

xy

0

 ,


0

−y2

xy

 ,


−yx

x2

0

 ,


0

−yx

x2

 .

The two in the middle are already Koszul relations, so that (Q/F0)4 have
dimension ≤ 2. But we also have

−y2

xy

0

 =


0

yx

−x2

+


−y2

0

x2

 .

Thus dimk(Q/F0)4 = 1, since the second term above is a Koszul relation.
Similarly we find that dimk(Q/F0)5 = 0. Hence, L2 is the 3-dimensional
k-vector space spanned by Q3 and one more relation. L1 is F ⊗ B = B3,
and L0 is B ⊕B, spanned by dx, dy.

Taking duals, we get that L2 = Hom(Q/F0, B). This set can be identified
with

Hom(Q/F0, B) = {ϕ : Q→ B | ϕ
∣∣
F0

= 0}

= {ϕ : Q→ P | im f
∣∣
F0
⊆ I}
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Thus, since I = m2, we must have that ϕ sends the two generators of Q
to something of degree 1 (degree 0 is not ok, since then F0 would be sent
outside I). Thus Hom(Q/F0, B) is 2× 2 = 4-dimensional, spanned by

im

y x 0 0

0 0 x y

 .

But d2 is the dual of the inclusion Q → F from the exact sequence above.
The dual is given by transposing, and we are left with one column - in
conclusion, T 2(B/k,B) is one-dimensional.

The Jacobian of I is given by2x y 0

0 x 2y

 ,

and it is easily seen that the kernel of Jac⊗B is given by m⊕m⊕m ⊂ B3. The
two relations kill off two dimensions, so dimk T

1(B/k,B) = dimk m
⊕3 − 2 =

6− 2 = 4.
Also T 0(B/k,B) is B2 modulo the image of the Jacobian. The constants

are left untouched, so dimk T
0(B/k,B) = 2 + 2 + 2− 3 = 3. A basis is given

by (1, 0), (0, 1) and (x, y). (thus Hartshorne is wrong?) ♥

7 Geometry of differential forms - Morita

7.1 Chapter 1 - Manifolds

Exercise 23 (1.1). For a natural number m, define a map fm : C → C by
z 7→ zm. Let z = x+ iy, and consider fm as a function of x and y. Compute
the Jacobian matrix of fm. ♠

Solution 23. We consider fm as a map R2 → R2. Write fm = rm + ijm.
Then we want compute ∂rm

∂x ,∂rm∂y and ∂jm
∂x and ∂jm

∂y . Now

∂

∂x
(x+ iy)m = m(x+ iy)m−1

and
∂

∂y
(x+ iy)m = im(x+ iy)m−1.
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Now taking real parts (<) and taking imaginary parts (=) are continous
operations C → R, so they commute with limits and hence derivatives.
Hence

∂rm
∂x

= <
(
m(x+ iy)m−1

)
= m<(zm−1)

and
∂rm
∂y

= <
(
mi(x+ iy)m−1

)
= −m=(zm−1)

since in general <(iz) = −=(z). Similarly

∂jm
∂x

= =
(
m(x+ iy)m−1

)
= m=(zm−1)

and
∂jm
∂x

= =
(
im(x+ iy)m−1

)
= <(zm−1).

Hence the Jacobian matrix ism<(zm−1) −m=(zm−1)

m=(zm−1) m<(zm−1)

 ,
with determinant m2|z|2. ♥

Exercise 24 (1.2). Prove that the set of all the orthogonal matrices of order
2, denoted O(2) becomes a C∞ manifold in a natural way. ♠

Solution 24. Let a, b, c, d be coordinates on M2(R). Then the equations of
O(2) are given by

a2 + b2 − 1 = 0

ac+ bd = 0

c2 + d2 − 1 = 0

Hence the Jacobian is 
2a 2b 0 0

c d a b

0 0 2c 2d

 .
We want this to have maximal rank. The determinant of the first minor
(choosing the first three columns) is 4c(ad − bc). Hence this has maximal
rank if and only if c 6= 0. So suppose c = 0. Then d2 = ±1, hence d = ±1,

19



hence b = 0, hence a2 = 1, hence a = ±1. Hence the only two matrices in
O(2) with c = 0 are the identity matrix I and −I. But by inspection, both
these values are regular, hence O(2) is a C∞ submanifold of M2(R) by the
inverse function theorem.

In fact, since the Jacobian have rank 3, it follows that O(2) is one-
dimensional. In fact it is diffeomorphic to two disjoint copies of S1. ♥

Exercise 25 (1.3). Show that the 1-dimensional complex projective space
CP 1 is diffeomorphic to S2. ♠

Solution 25. We define a map CP 1 → S2 locally. That is, both spaces are
covered by two charts, and we check that the maps agree on intersections.
It will be clear from the construction that it is injective and surjective and
C∞, and since the spaces are compact, there exists an inverse.

CP 1 is covered by two charts i1 : (x, y) 7→ [x + iy, 1] and i2 : (x, y) 7→
[1, x + iy]. Similarly, S2 is covered by two charts, given by stereographic
projection. The formulas are j−11 (x, y, z) =

(
x

1−z ,
y

1−z

)
and j−12 (x, y, z) =(

x
1+z ,

y
1+z

)
with inverses j1(a, b) =

(
2a

1+a2+b2
, 2b
1+a2+b2

, −1+a
2+b2

1+a2+b2

)
and j2(a, b) =(

2a
1+a2+b2

, 2b
1+a2+b2

, 1−a
2−b2

1+a2+b2

)
.

Define a map CP 1 → S2 by the identity map on the chart corresponding
to i1 and on the other chart, let the map be given by ϕ : (a, b) 7→ (a,−b).
Then one can check that j2 ◦ ϕ ◦ i−12 ◦ i1 = j1.

Hence the diagram

CP 1 // S2

R2

i1

<<

i−1
2 ◦i1

""

// R2

j−1
2 ◦j1   

j1

OO

R2

i2

OO

ϕ // R2

j2

XX

And this defines a map CP 1 → S2.
This map globalizes to

CP 1 3 [x+iy, a+ib] 7→
(

2ax+ 2by

a2 + b2 + x2 + y2
,

2ay − 2bx

a2 + b2 + x2 + y2
,
a2 + b2 − x2 − y2

a2 + b2 + x2 + y2

)
∈ S2

♥
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8 Introduction to Differential Geometry - Spivak

8.1 Chapter 1 - Manifolds

Exercise 26 (Exercise 3). a) Every manifold is locally compact.

b) Every manifold is locally pathwise connected, and a connected manifold
is pathwise connected.

c) A connected manifold is arcwise connected. (Arcwise connected means
that any two points can be connected by a 1− 1 path.)

♠

Solution 26. a) Indeed, let x : Rn → U ⊂ M be a homeomorphism of an
open subset of M with Rn. Then the image of [0, 1]n is compact in M .

b) The first part follows in the same way, since M is locally homeomorphic
to Rn. Now assume that M is connected. Fix q ∈ M . Let V be the set
of all points in M such that there is a path from q to p. Clearly V is
non-empty, by the first part of the exercise.

V is also open: For let p ∈ V . Choose a neighbourhood U around
p homeomorphic to Rn. By composing paths, any point in U can be
reached as well. Hence V is open.

We show that V is closed: let {pi} be a convergent sequence of points
pi ∈M with all pi ∈ V . We want to show that the limit point is contained
in V . Choose a compact neighbourhood around lim pi = p, which we can
assume to be ≈ [0, 1]n. Then p ∈ [0, 1]n, and this is path connected.
Hence V is closed.

c) For n > 2, one can always homotope away from the points of non-
injectivity. For n = 2, one can do “Reidemeister” moves.

♥

Exercise 27 (Exercise 4). A space X is called locally connected if for each
x ∈ X, it is the case that every neoughbourhood of x contains a connected
neighbourhood.

a) Connectedness does not imply local connectedness.

b) An open subset of a locally connected space is locally connected.

c) X is locally connected if and only if components of open sets are open,
so every neigbourhood of a point in a locally connected space contains an
open connected neighbourhood.
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d) A locally connected space is homeomorphic to the disjoint union of its
components.

e) Every manifold is locally connected, and consequently homeomorphic to
the disjoint union of its components, which are open submanifolds.

♠

Solution 27. a) Consider the topologist’s since curve. Every neighbour-
hood of 0 is diconnected.

b) This is “trivial”. Let U be the said open subset. The open subsets of U
are intersections U ∩V where V is open in X. Hence local connectedness
is trivially inherited.

c) Suppose X is locally connected. Let U ⊂ X be an open set, and let
U = ∪iUi be its decomposition into its components. We want to show
that each Ui is open. So let x ∈ Ui. Then Ui contains a connected
neighbourhood containing x, by definition, hence Ui is open.

Conversely, assume components of open sets are open. Let x ∈ X, and
let U be an open neighbourhood of x. Then Ui as above is connected and
can be chosen to contain x, hence x is locally connected.

d) This is trivial, since the components are open.

e) Pathwise local connectedness implies local connectedness.
♥

Exercise 28 (Exercise 15). a) Show that P1 is homeomorphic to S1. (in
fact, diffeomorphic)

b) Show that Pn\Pn−1 is homeomorphic to the interior Dn = {x ∈ Rn |
d(x, 0) < 1}.

♠

Solution 28. a) Both P1 and S1 can be covered by two open subsets home-
omorphic to R, and it can be checked that in both cases, the transition
mapping is given by x 7→ 1

x , hence they are glued in the same way, hence
they must be diffeomorphic.S

b) By using homogeneous coordinates, we see that Pn\Pn−1 is homeomorphic
to Rn which is again homeomorphic to the interior of a disc.

♥
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8.2 Chapter 3

Exercise 29. Show that in the definition of an equivalence it suffices to
assume that the map E1 → E2 is continous. ♠

Solution 29. Okay, so the assumptions are now that there is a continous
map f : E1 → E2 and a commuting diagram

E1

π1 !!

f // E2

π2
��
B

taking each fibre π−11 (p) isomorphically onto π−12 (p). We want to show that
f is a homeomorphism.

First we show that f is bijective by defining a set-theoretic inverse g :
E2 → E1. Suppose q ∈ E2. Then q ∈ π−12 (π2(q)). But f

∣∣
π−1
1 (π2(q))

is a
vector space isomorphism, so we define

g(q) = f
∣∣
π−1
1 (π2(q))

−1
(q).

The next step is to show that g is continous. This actually follows from
the local triviality condition. For each open U on B on which E1, E2 both
are trivial. Then there are isomorphisms E1

∣∣
U
' U×Rn and E2

∣∣
U
' U×Rn,

then we have a commutative diagram

U × Rn
π1

&&

f ′ // U × Rn

π2
��
U

The commuting condition implies that f ′ is the identity on the first factor,
and thus f ′ is linear map on the second factor. Linear maps are always
continous. ♥

Exercise 30. Show that in the definition of bundle map, continuity of f :
B1 → B2 follows automatically from continuity of f̃ : E1 → E2. ♠

Solution 30. Again, this is local triviality. Choose a trivialization so that
the map is given by U × Rn → V × Rm. This is continous by assmuption.
Choose open W ⊂ V ⊂ B2. The map π2 is continous (of course), and by
continuity of f̃ and openness of π1, we have f−1(W ) = π1(f̃

−1(π−12 (W )))
which is open. ♥
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Exercise 31. For a bundle map (f̃ , f), with f : B1 → B2, let Kp be the
kernel of the map f̃

∣∣∣
π−1
1 (p)

from π−11 (p) to π−12 (f(p)).

1. If p 7→ dimKp is continous, then ker f̃ , the union of all Kp is a bundle
over B1.

2.

♠

Solution 31. 1. The condition says that dim kerKp is constant on connected
components, so we may as well assume that dim kerKp is constant and B1

is connected.
First choose a small open set U ⊂ B2 such that E1, E2 are both trivial

over V = f−1(U) and E2, respectively.
Then the map E1

∣∣
V
→ E2

∣∣
U

takes the form (v, p) 7→ (f(v), f2(v, p)),
since this is a bundle map (follows from commutativity).

Then
ker f̃

∣∣∣
V
' {(v, p) ∈ V × Rn | f2(v, p) = 0} .

We can define a map ker f̃
∣∣∣
V
→ V by (v, p) 7→ v (this is just the restriction

of the projection to B1). This map has constant rank dimV = m, so that
by Theorem 10 i Chapter 2, it looks locally like a projection (a1, . . . , am) 7→
(a1, . . . , am). ♥

9 Introduction to Commutative Algebra - Atiyah-
MacDonald

9.1 Chapter 1 - Rings and ideals

Exercise 32. Let x be a nilpotent element of a ring A. Show that 1 + x
is a unit of A. Deduce that the sum of a nilpotent element and a unit is a
unit. ♠

Solution 32. Suppose xn+1 = 0 and that xn 6= 0. Consider

s = 1− x+ x2 − x3 + . . .+ xn

Then
sx = x− x2 + x3 − x4 + . . .− xn
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since xn+1 = 0. But then s + sx = 1, so that s(1 + x) = 1. Hence 1 + x is
a unit. To prove that the sum of any unit and any nilpotent is a unit, note
that if u is any unit, then u−1x is still nilpotent. So since u+x = u(1+u−1x)
and product of units are units, the claim follows. ♥

Exercise 33 (Exercise 11). A ring A is Boolean if x2 = x every x ∈ A. In
a Boolean ring A, show that

i) 2x = 0 for all x ∈ A.

ii) Every prime ideal p is maximal, and A/p is a field with two elements.

iii) Every finitely generated ideal in A is principal.

♠

Solution 33. i) We have 4x = 4x2 = (2x)2 = 2x, hence 2x = 0.

ii) Consider A/p. This is an integral domain in which x2 = x for all
x ∈ A/p. But then x2− x = x(x− 1) = 0. Hence either x = 0 or x = 1,
hence A/p can have only two elements. Thus it is isomorphic to Z/2Z
which is a field, hence p is maximal.

iii) Let I = (a1, · · · , ar). Every ideal is contained in a maximal ideal m.
Consider the image of I in A/m.

iv) By induction we can assume that I is generated by two elements, say
I = (a1, a2). Then I claim that I = (a1 + a2). Cleary (a1 + a2) ⊆
(a1, a2). The other direction will follow if we can see that a1a2 = 0 (or
they can be assumed to satisfy this), because a1a2 + a1 ∈ (a1 + a2).
[[[[[[[[[[[????]]]]]]]]]]]

♥

Exercise 34 (Exercise 12). A local ring contains no nontrivial idempotents.
♠

Solution 34. Suppose x 6= 0, 1 and that x2 = x. Then x2−x = x(x−1) = 0.
Both x and x − 1 cannot be contained in m since they generate A. Hence
one of the is unit. Hence either x = 0 or x = 1, contradiction. ♥

Exercise 35 (Exercise 15, The prime spectrum of a ring). Let A be a ring
and let X be the set of prime ideals of A. For each subset E of A, let V (E)
denote the set of prime ideals of A which contain E. Prove that
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1. If a is the ideal generated by E, then V (E) = V (a) = V (r(a))1.

2. V (0) = X and V (1) = ∅.

3. If (Ei)i∈I is a family of subsets of A, then

V

(⋃
i∈I

Ei

)
=
⋂
i∈I

V (Ei) .

4. V (a ∩ b) = V (ab) = V (a) ∪ V (b) for all ideals a, b of A.

These results show that the sets V (E) satisfy the axioms for closed sets in
a topological space. The resulting topolgoy is called the Zariski topology.
The topological space X is called the prime spectrum of A and denoted
SpecA. ♠

Solution 35. We do these one by one.

1. Clearly p ⊃ 〈E〉 ⊃ E, where the brackets denote the ideal generated
by E. Hence V (a) ⊂ V (E). But if p ⊃ E, we must have p ⊃ a since
〈p〉 = p. Thus the first equality is established.

Since r(a) ⊂ a, we have V (a) ⊂ V (r(a)). Suppose p ⊃ r(a) and
suppose a ∈ a. We want to show a ∈ p. We know that an ∈ r(a) for
some n, hence an ∈ p. But p is a prime ideal, so a ∈ p also. Hence
equality is established.

2. Every ideal contains the zero ideal and (1) is not a prime ideal.

3. Suppose p ⊃ ∪Ei. Then p ⊃ Ei for all i, so p ∈ ∩V (Ei). Thus this is
just a formal consequence of the contravariant nature of V (−).

4. Since ab ⊂ a∩ b, we automatically have V (a∩ b) ⊂ V (ab). So suppose
p ⊃ ab and let a ∈ a ∩ b. Then a2 ∈ ab ⊂ p, but then a ∈ p since p is
prime.

Now suppose p ⊃ a or p ⊃ b. Then if a ∈ a ∩ b, we have a ∈ p, so
V (a)∪ V (b) ⊂ V (a∩ b). Now suppose p ⊃ a∩ b. Then by Proposition
1.11, we have p ⊃ a or p ⊃ b.

♥
1Here r(a) denotes the radical of a

26



Exercise 36 (Exercise 17). For each f ∈ A, let Xf denote the complement
of V (f) in X = SpecA. The sets Xf are open. Show that they form a basis
for the Zariski topology, and that

1. Xf ∩Xg = Xfg.

2. Xf = ∅ ⇔ f is nilpotent.

3. Xf = X ⇔ f is a unit.

4. Xf = Xg ⇔ r((f)) = r((g)).

5. X is quasi-compact.

6. More generally, each Xf is quasi-compact.

7. An open subset of X is quasi-compact if and only if it is a finite union
of the sets Xf .

The sets Xf are called basic open sets of X = SpecA. ♠

Solution 36. We need to show that the sets Xf forms a basis for the Zariski
topology on X. This means that each open in X can be written as a union
of the Xf . An open in X have the form

U(a) = {p ∈ SpecA | p 6⊃ a}.

The sets Xf have the form

Xf = {p ∈ SpecA | f 6∈ p}.

Let {fi}i∈I generate a. I claim that
⋃
Xfi = U(a). Let p be an element of

the left hand side. This means by definition that fi 6∈ p for some i. But fi
is an element of a, so a 6⊂ p, hence p ∈ U(a).

Conversely, suppose p 6⊃ a. Then some generator fi of a is not contained
in p. Hence p ∈ Xfi .

1. We have
Xf ∩Xg = {p | f, g 6∈ p} = {p | fg 6∈ p},

since p is a prime ideal: for suppose f, g 6∈ p, then fg 6∈ p also, because
if fg ∈ p, primality implies either f or ginp. Conversely, suppose
fg 6∈ p. Then neither f, g can be in p by defintion of ideals.

27



2. Suppose Xf is empty. Then there are no prime ideals with f 6∈ p.
But that means that f is contained in every prime ideal, hence f is
nilpotent.

3. Suppose Xf = X. Then for all prime ideals, f 6∈ p, hence f generates
the unit ideal, hence f is a unit. For if f did not generate the unit
ideal, f would be contained in some maximal ideal m, and maximal
ideals are prime.

4. Suppose Xf = Xg. By definition, this means that for every prime p
with f 6∈ p, we have g 6∈ p (and conversely). The contrapositive of this
is g ∈ p⇔ f ∈ p. Hence we have

r((f)) =
⋂

p⊃(f)

p =
⋂
p3f

p =
⋂
p3g

p = r((g)).

5. Let {Xf}f∈I be a covering of X by basic opens, that is, X =
⋃
f∈I Xf .

This means that for every p ∈ X, there is some f ∈ I with f 6∈ p.
I claim that the fi generate the unit ideal: for if not, 〈fi〉 would be
contained in some prime ideal, but by the above, this is not the case.
Hence there is an equation of the form 1 =

∑
gifi with gi ∈ A, which

is a finite sum. Hence these finitely many fi suffice.

6. ...

♥

9.2 Chapter 2 - Modules

Exercise 37 (Excercise 1). Show that Z/m⊗Z Z/n = 0 if m,n are coprime.
♠

Solution 37. Write 1 = am+ bn. Then

1⊗ 1 = (am+ bn)⊗ 1 = am⊗ 1 + bn⊗ 1

= 0 + bn⊗ 1 = 1⊗ bn = 1⊗ 0 = 0.

And we are done. ♥

Exercise 38 (Exercise 2). Let A be a ring, a an ideal, and M an A-module.
Then (A/a)⊗AM is isomorphic to M/aM . ♠
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Solution 38. Start with

0→ a→ A→ A/a→ 0.

Tensoring with M gives

a⊗M →M → A/a⊗AM → 0.

But a⊗AM ' aM , so that the sequence reads A/a⊗M 'M/aM . ♥

Exercise 39 (Exercise 3). Let A be a local ring, M,N finitely generated
A-modules. Prove that if M ⊗N = 0, then M = 0 or N = 0. ♠

Solution 39. First a counterexample if A is not a local ring. Let A = k[x]
andM = k[x]/(x−1) andN = k[x]/(x). We can write 1 = −(x−1)+x. Then
M⊗AN = 0 by the same method as in Exercise 1 (1⊗1 = (−x+1+x)⊗1 =
x⊗ 1 = 1⊗ x = 0).

Let Mk := M ⊗k = M/mM . By Nakayama’s lemma, Mk = 0⇒M = 0.
So suppose M ⊗A N = 0. Then (M ⊗A N)k = 0. But this is isomorphic

to Mk ⊗A Nk since k ⊗A k = k. But Mk ⊗A Nk 'Mk ⊗k Nk, as k-modules,
since everything in m acts trivially on Mk. But these are vector spaces over
a field, now we must have Mk = 0 or Nk = 0, and by Nakayama we are
done. ♥

Exercise 40 (Exercise 4). Let Mi (i ∈ I) be any family of A-modules, and
let M be their direct sum. Then M is flat if and only if each Mi is flat. ♠

Solution 40. Let
0→ N ′ → N → N ′′ → 0

be any exact sequence. Then tensoring with M gives

0→ N ′ ⊗AM → N ⊗AM → N ′′ ⊗AM → 0.

We only need to check that the left map is injective. But we have N ′⊗AM '⊕
iN
′ ⊗A Mi and N ⊗A M '

⊗
iN ⊗A Mi, and thus the left map is just

the direct sum of all the maps

0→ N ′ ⊗AMi → N ⊗AM,

which is injective if and only if each Mi is flat. ♥

Exercise 41 (Exercise 5). Let A[x] be the ring of polynomials in one inde-
terminate over a ring A. Prove that A[x] is flat A-algebra. ♠
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Solution 41. We have A[x] =
⊕∞

i=0 x
iA as an A-module. Now use Exercise

4. ♥

Exercise 42 (Exercise 24). If M is an A-module, the following are equiva-
lent:

i) M is flat.

ii) TorAn (M,N) = 0 for all n > 0 and A-modules N .

iii) TorA1 (M,N) = 0 for all A-modules N .

Solution 42. To compute TornA(M,N), one takes an A-resolution of N and
tensor it with M and take homology. But M is flat, so the sequence stays
exact, so the homology is zero. This shows i)⇒ ii).

The implication ii)⇒ iii) is trivial.
Now let

0→ N ′ → N → N ′′ → 0

be any exact sequence of A-modules. Then by properties of the Tor functor,
we have an exact sequence

Tor1(M,N ′′)→ N ′ ⊗M → N ⊗M → N ′′ ⊗M → 0.

But Tor1(M,N ′′) = 0, so the sequence is short exact. Hence M is flat. ♥

Exercise 43 (Exercise 25). Let

0→ N ′ → N → N ′′ → 0

be an exact sequence with N ′′ flat. Then N ′ is flat if and only if N is flat. ♠

Solution 43. We have from the Tor exact sequence

0→ Tor1(N
′,M)→ Tor1(N,M)→ 0

since Tor2(N
′′,M) = Tor1(N

′′,M) = 0. The statement follows. ♥

♠
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9.3 Chapter III - Rings and modules of fractions

Exercise 44 (Exercise 1). Let S be a multiplicatively closed subset of a ring
A, and let M be a finitely-generated A-module. Prove that S−1M = 0 if
and only if there exists s ∈ S such that sM = 0. ♠

Solution 44. Suppose there exists such s. Let m/s′ ∈ S−1M . This is zero
if and only if there exists s ∈ M such that s(s′m) = 0. But ss′m = s′sm =
s′0 = 0. So m = 0 in S−1M . (note that we did not use finite generation)

Now let m1, . . . ,mr be a set of generators for M and suppose that
S−1M = 0. Then for each i (i = 1, . . . , r), there exists si such that simi = 0.
Since every element of M is an A-linear combination of the mi, it follows
that the product s1s2 · · · sr makes sM = 0. ♥

9.4 Chapter 5 - Integral dependence and valuations

Exercise 45 (Exercise 1). Let f : A→ B be an integral morphism of rings.
Show that f∗ : SpecB → SpecA is a closed mapping. ♠

Solution 45. The map f∗ is by definition given by p 7→ f−1(p) = p ∩A. A
closed subset of SpecB is by definition

V (a) = {p ∈ SpecB | p ⊃ a}

for some ideal a ⊂ B.
Then the image of V (a) is the set

f∗(V (a)) = {p ∩A | p ∈ SpecB, p ⊃ a}

I claim that this is equal to

V (a ∩A) = {q ∈ SpecA | q ⊃ a ∩A},

which clearly is a closed subset of SpecA.
One direction is obvious: let p ∩A be an element of f∗(V (a)). This is a

point of SpecA, and clearly p ∩A ⊃ a ∩A since p ⊃ a.
The other direction needs the going up Theorem 5.10. Suppose q ∈

V (a ∩ A). Then by Going Up, there exists p ∈ SpecB with p ∩ A = q. But
we need to check that p ⊃ a. That is, we need to prove the assertion that if
q = p∩A and q ⊃ a∩A, then p ⊃ a. So suppose a ∈ a ⊂ B. Then a satisfies
an equation

an + bn−1a
n−1 + . . .+ b1a+ b0 = 0
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with bi ∈ A. Since a ∈ a, we see that b0 ∈ q = p ∩A. Hence

an + bn−1a
n−1 + . . .+ b1a = a(an−1 + bn−1a

n−2 + . . .+ b1) ∈ p

since q ⊂ p. But p is prime so either a ∈ p and we are done, or an−1bn−1an−2+
. . .+ b1 ∈ p, and we can continue by induction.

Hence we are done. ♥

9.5 Chapter 7 - Noetherian rings

Exercise 46 (Exercise 11). Let A be a ring such that Ap is Noetherian for
each p ∈ SpecA. Is A necessarily noetherian? ♠

Solution 46. Consider the ring

A = Z/2× Z/2 · · · .

It is a countable product of noetherian rings. The primes are just the co-
ordinate axes, and each localization is isomorphic to Z/2. Thus each Ap is
Noetherian, but A is not. ♥

Exercise 47 (Exercise 15). Let A be a Noetherian local ring, m its maximal
ideal and k its residue field and let M be a finitely generated A-module.
Then the following are equivalent:

i) M is free.

ii) M is flat.

iii) The mapping m⊗M → A⊗M is injeective.

iv) TorA1 (k,M) = 0.

♠

Solution 47. The implication i) ⇒ ii) is trivial. One way is to compute
TorA1 (M,N) for any A-module N . But a free resolution of M is just one-
term, so TorA1 (M,N) is automatically zero.

The implication ii⇒ iii) follows by tensoring the incusion m ↪→ A with
M .

The implication iii)⇒ iv) follows from the Tor exact sequence

TorA1 (A,M)→ TorA1 (k,M)→ m⊗M → A⊗M → k ⊗M → 0.
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The leftmost term is zero since A is a free A-module, and by iii) and exact-
ness we must as well have Tora1(k,M).

Now for iv ⇒ i). Choose element mi ∈ M (0 ≤ i ≤ r) such that
they form a k-basis for M/mM . Choose a surjection f : Ar → M and let
E = ker f be its kernel. Then we have an exact sequence

0→ E → Ar →M → 0.

of finitely-generated A-modules (E is finitely generated by Proposition 6.2).
Tensor the sequence by k, and get

TorA1 (k,M)→ E/mE → kr →M/mM → 0.

The left-most term is zero by assumption. The last two spaces are k-vector
spaces of the same dimension, and it follows that E/mE = 0. But then it
follows that E is zero by Nakayama’s lemma, hence M is free. ♥

Exercise 48 (Exercise 16). Let A be a Noetherian ring, M a finitely-
generated A-module. Then the following are equivalent:

i) M is a flat A-module.

ii) Mp is a free Ap-module for each p ∈ SpecA.

iii) Mm is a free Am-module for each maximal ideal m.

So flatness is the same as being locally free. ♠

Solution 48. The implications i⇒ ii) and ii)⇒ iii) follows trivially from
the previous exercise. We prove iii)⇒ i).

Applying the Tor functor commutes with localization, hence we have
TorA1 (M,N)m = TorAm

1 (Mm, Nm) = 0 for all m. But being zero is a local
property, so it follows that TorA1 (M,N) = 0 for all A-modules N . Hence M
is flat. ♥

10 The K-book - Charles Weibel

10.0.1 Chapter 1.1 - Free modules, GLn and stably free modules

Exercise 49 (Semisimple rings). A nonzero R-module M is called simple if
it has no submodules other than 0 and M , and semisimple if it is a direct
sum of simple modules. A ring R is called semisimple if it is a semisimple
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R-module. If R is semisimple, show that R is a direct sum of a finite (say
n) number of simple modules.

Then use the Jordan-Hölder theorem to show that every stably free mod-
ule is free. ♠

Solution 49. Suppose R is semisimple, that is R = ⊕Mi with a priori
infinitely many Mi. But write 1 =

∑
aimi with mi ∈ Mi and ai ∈ R. This

is a finite sum, and since for any r ∈ R, we have r =
∑
airmi, only finitely

many Mi need occur in the decomposition R = ⊕Mi.
To see that any stably free module is free if R is semisimple, suppose

M ⊕ Rn ' Rm. Then we can write M ⊕Mn
i ' ⊕Mm

j as above, and note
that the image of a simple module must be simple, hence the Mj on the
right must be mapped to copies of themselves isomorphically. Hence we can
cancel Mi-terms on both sides until we arrive at Rk 'M for some k. ♥

Exercise 50. Consider the following conditions on a ring R:

i) R satisfies the invariant basis property (IBP).

ii) For all m,n, if Rm ' Rn ⊕ P , then m ≤ n.

iii) For all n, if Rn ' Rn ⊕ P , then P = 0.

Show that iii ⇒ ii ⇒ i. ♠

Solution 50. Suppose Rm ' Rn ⊕ P and suppose n > m. Then we can
write Rm ' Rm⊕ (Rn−m⊕P ). Then from iii we must have Rn−m⊕P = 0,
but this is impossible.

Now suppose Rn ' Rm. Then for P = 0, we have Rm ' Rn ⊕ P , hence
m ≤ n. But the opposite argument works as well, hence m = n. ♥

Exercise 51. Show that iii) in the previous exercise and the following matrix
conditions are equivalent:

a) For all n, every surjection f : Rn → Rm is an isomorphism.

b) For all n and f, g ∈Mn(R), if fg = 1n, then gf = 1n and g ∈ GLn(R).

Then show that commutative rings satisfy b), hence iii). ♠

Solution 51. First we see that iii ⇒ a). Suppose f : Rn → Rm is a
surjection. Then we have an exact sequence

0→ K → Rn
f−→ Rn → 0.
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Since Rn is free, the sequence splits and we have Rn ' Rn⊕K, but then by
assumption K = 0. Hence f is an isomorphism.

Now suppose a), that is, every surjection is an isomorphism. Next sup-
pose Rn ' Rn ⊕ P . Compose with the surjection Rn ⊕ P → Rn to get a
surjective map Rn → Rn. The kernel of this is P . But every surjection
Rn → Rn is an isomorphism, hence P = 0.

Now suppose iii). The condition fg = 1n implies that g is injective and
that we have a splitting Rn ' Rn ⊕ cokerg. But then cokerg = 0 by iii),
hence g is an isomorphism. To show that gf = 1n, suppose gf(x) = y.
Applying f to both sides give f(x) = f(y). So we must show that f is
injective. So suppose that f(x) = 0. Since g was surjective, we can write
x = g(y) for some y. Then f(g(x)) = x = 0. Hence f is injective. So we
have proven b).

Now suppose b). Then b implies a, hence iii). ♥

10.1 Chapter 1.2 - Projective modules

Exercise 52 (Radical ideals). Let I be a radical ideal in R. If P1, P2 are
finitely generated projective R-modules such that P1/IP1 ' P2/IP2, show
that P1 ' P2. ♠

Solution 52. ♥

11 Representation Theory - Fulton, Harris

11.1 Representations of Finite Groups

Exercise 53 (Exercise 1.1). Verify that the relation

〈g · v∗, g · v〉 = 〈ρ∗(g)(v∗), ρ(g)(v)〉 = 〈v∗, v〉

is satisfied when we define

ρ∗(g) = ρ(g−1)t : V ∗ → V ∗,

that is, (ρ∗g)(v∗)(w) = 〈(ρ∗g)(v∗), w〉 = 〈v∗, (ρg−1)(w)〉. ♠

Solution 53. This is a matter of calculation.

〈gv∗, gv〉 = 〈v∗, (ρg−1)(gv)〉 = 〈v∗, v〉.

So the definition is ok. ♥
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Exercise 54 (Exercise 1.2). Verify that in general the vector space of G-
linear maps between two representations V and W of G is just the subspace
Hom(V,W )G of elements of Hom(V,W ) fixed under the action of G. This
subspace is often denoted HomG(V,W ). ♠

Solution 54. A map ϕ : V → W is G-linear when ϕ(gv) = gϕ(v). The
action of G on ϕ is given by gϕ(v) = gϕ(g−1v). But by G-linearity, this is

ϕ(gv) = gg−1ϕ(gv) = gg−1ϕ(v) = ϕ(v).

Hence a map is G-linear if and only if it is fixed by the action of G. ♥

Exercise 55 (Exercise 1.3). Let ρ : G → GL(V ) be any representation of
the finite group G on an n-dimensional vector space V and suppose that for
any g ∈ G, the determinant if ρ(g) is 1. Show that the spaces ∧kV and
∧n−kV ∗ are isomorphic as representations of G. ♠

Solution 55. This is (again) just a matter of writing out the definitions.
First we define the isomorphism, and then we check that it is actually an
isomorphism of representations.

k∧
V →

n−k∧
V ∗

v1 ∧ · · · ∧ vk 7→ (w1 ∧ · · · ∧ wn−k 7→ v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wn−k)

Being a map of representations is equivalent to g−1ϕ(gv) = ϕ(v), so we just
need to check that all the g’s disappear from the left hand side.

g−1ϕ(gv) = g−1(w1 · · ·wn−k 7→ gv1 · · · gvkw1 · · ·wn−k)
= (gv1 · · · gvkgw1 · · · gwn−k)
= det ρ(g)v1 ∧ · · · ∧ wn−k.

Hence ϕ is a map of representations if and only if det ρ(g) = 1 for all g ∈ G.
(it is an isomorphism because it has zero kernel: because what would the

kernel be? Every subspace is the same, and this is a basis free description)
♥

Exercise 56 (Exercise 1.4). The permutation representation R of G acting
on a finite set X have two descriptions: one is given by letting V be the
vector space with basis {ex | x ∈ X} and letting g act on V by gex = egx.

Alternatively R is the set of functions f : X → C with action (gα)(h) =
α(g−1h).
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a) Show that these two decriptions agree by identifying ex with the charac-
teristic function which takes the value 1 on x and 0 elsewhere.

b) The space of functions on G can also be made into a G-module by the
rule (gα)(h) = α(hg). Show that this is an isomorphic representation.

♠

Solution 56. a). Clearly the vector space dimensions agree (since the
characteristic functions are a basis). So we need to check that this is a
map of representations. Denote the characteristic function by χx. Then
ϕ(gex)(h) = ϕ(egx)(h) = χgx(h). Similarly gϕ(ex)(h) = gχx(h) = χx(g−1h),
The first function is 1 if gx = h, and the second function is 1 if g−1h = x,
and these are equivalent.

b). Send α to the function g 7→ α(g−1). Call this assignment ψ. We
need to check that ψ(gα) = gψ(α).

First the left hand side. We have: ψ(gα)(h) = ψ(h 7→ α(g−1h))(h) =
α(g−1h−1).

And similarly: gψ(α)(h) = g(h 7→ α(h−1))(h) = gα(h−1) = α(g−1h−1).
And these are equal. ♥

Exercise 57 (Exercise 1.10). G = S3. Verify that with σ = (12), τ = (123),
the standard representation has a basis α = (ω, 1, ω2), β = (1, ω, ω2), with

τα = ωα, τβ = ω2β, σα = β, σβ = α.

♠

Solution 57. The standard representation V is the subspace {x1+x2+x3 =
0} of C3. Since 1 + ω + ω2 = 0, and α · β = 3ω 6= 0, these two span V .

The identities are easy. ♥

Exercise 58 (Exercise 1.11). Use this approach to find the decomposition
of the representations Sym2 V and Sym3 V . ♠

Solution 58. The elements {α2, αβ, β2} are a basis of Sym2 V , and the
eigenvalues are ω2, 1 and ω, respectively. Thus 〈αβ〉 span a representation
isomorphic to U , the trivial representation, and 〈α2, β2〉 span a representa-
tion isomorphic to V , the standard representation. Hence Sym2 V = U ⊕V .

The elements {α3, α2β, αβ2, β3} are a basis of Sym3 V . The eigenvalues
are 1, ω, ω2 and 1, respectively. Looking at the action of σ = (12), we see
that U ' 〈α3 + β3〉, and U ′ ' 〈α3 − β3〉. The remaining 〈α2β, αβ2〉 span a
representation isomorphic to V . Hence Sym3 V = U ⊕ U ′ ⊕ V . ♥
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Exercise 59 (Exercise 2.2). For Sym2 V , verify that

χSym2 V (g) =
1

2

[
χV (g)2 + χV (g2)

]
.

Note that this is compatible with the decomposition V ⊗ V = Sym2 V ⊕
∧2V . ♠

Solution 59. The eigenvalues of g acting on Sym2 V are {λiλj}. Hence

χSym2 V (g) =
∑
i≤j

λiλj

=
∑
i<j

λiλj +
∑
i

λ2i

=
1

2

(
χV (g)2 − χV (g2)

)
+ χV (g2)

=
1

2

(
χV (g)2 + χV (g2)

)
.

♥

Exercise 60 (Exercise 2.5, The original fixed point formula). If V is a
permutation representation associated to the action of a group G on a finite
set X, show that χV (g) is the number of elements fixed by g. ♠

Solution 60. This is easy. The matrix associated to g is a permutation
matrix with a 1 in row j if element number i is sent to j. Then number of
fixed points is the number of ones on the diagonal, and this is χV (g). ♥

Exercise 61 (Exercise 2.34). Let V,W be irreducible representations of G
and L0 : V →W any linear mapping. Define L : V →W by

L(v) =
1

|G|
∑
g

g−1L0(gv).

Show that L = 0 if V andW are not isomorphic, and that L is multiplication
by tr(L0)/ dim(V ) if V = W . ♠
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Solution 61. We want to apply Schur’s lemma. We check that L is a G-
module homomorphism. We have

L(hv) =
1

|G|
∑
g

g−1L0(ghv)

=
1

|G|
∑
gh

hgh−1L0(ghv)

=
1

|G|
∑
g′

hg′
−1
L0(g

′v)

Hence L is a G-module homomorphism. Hence by Schur’s lemma, L is either
the zero map or an isomorphism. In particular, if they are not isomorphic,
L = 0. Now suppose V = W . ♥

11.2 Chapter 7 - Lie groups

Exercise 62 (Exercise 7.11). a) Show that any discrete normal subgroup
H of a connected Lie group G is in the center Z(G).

b) If Z(G) is discrete, then G/Z(G) have trivial center.
♠

Solution 62. a) We must show that for any z ∈ H and any g ∈ G, we
have gz = zg ⇔ z = gzg−1, that is, that z is fixed by conjugation by
all elements of g. Since H is normal, we must have gzg−1 = z′ for some
z′ ∈ H. Conjugation is a continous mapping, hence if g′ is close to g,
g′zg

′−1 is close to z′. But by normality this must still be an element of H,
but H is discrete, for for g′ close enough to g the only element of H that
can be hit is is z. Hence the mapping z 7→ gzg−1 is locally constant. G
is connected, so the mapping must be constant, and since geg−1 = e, the
mapping must be the identity mapping, hence gzg−1 = z for all g ∈ G
and z ∈ H.

b) Suppose a ∈ Z(G/Z(G)). Let π : G → G/Z(G) be the quotient map.
Let Z = π−1(Z(G/Z(G)). We want to show that if a is a representative
for a, then a lies in Z(G). Lying in Z(G/Z(G)) means that [a, b] ∈ Z(G)
for all a ∈ Z and b ∈ G. But this implies that the map [, ] : Z ×G→ G
lands in Z(G), which is discrete, hence the map must be constant, hence
by definition, a lies in Z(G).

♥
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Exercise 63 (Exercise 7.12). If ϕ : H → G is a covering of connected Lie
groups, show that Z(G) is discrete if and only if Z(H) is discrete, and then
H/Z(H) = G/Z(G). Therefore, if Z(G) is discrete, the adjoint form of G
exists and is G/Z(G). ♠

Solution 63. Suppose Z(G) is discrete, and let h ∈ Z(H). Since ϕ is a
covering, the image ϕ(h) lies in Z(G). Thus, since Z(G) is discrete, we can
find a small neighbourhood around ϕ(h) such that ϕ(h) ∩ Z(G) = {ϕ(h)}.
By shrinking the neighbourhood if necessary, it can be shrunk so that ϕ is a
diffeomorphism around h, hence Z(H) is discrete as well.

Suppose Z(H) is discrete. Then the image of any h ∈ Z(H) lies in Z(G)
and ϕ is a local diffeomorphism.

Now for the other part. We note that we have a diagram:

1 // kerϕ
∣∣
Z(H)

//

��

kerϕ //

��

ker ϕ̄

��
1 // Z(H) //

��

H //

ϕ

��

H/Z(H)

��

// 1

1 // Z(G)

��

// G //

��

G/Z(G)

��

// 1

1 1 1

The vertical lower maps are all surjective since ϕ is a covering map and by the
proof above. By the previous exercise, we find that kerϕ

∣∣
Z(H)

= kerϕ, hence
H/Z(H) ' G/Z(G) by the snake lemma (which holds here, see mathoverflow
53124). ♥

11.3 Lecture 8 - Lie Algebras and Lie groups

Exercise 64 (Exercise 8.1). Let G be a connected Lie group, and U ⊂ G
any neighbourhood of the identity. Show that U generates G. ♠

Solution 64. The subgroup generated by U can be written

H =
⋃
n∈Z

Un,

hence H is an open subgroup. But since G\H =
⋃
h6∈H hH, we see that any

open subgroup is also closed, hence H is both open and closed, hence H = G.
(this solution was given by Theo Bühler at math.stackexchange). ♥
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12 Twenty-Four Hours of Local Cohomology

12.1 Lecture 1 - Basic notions

Exercise 65. Let k be a finite field.

1. For every point p ∈ kn, construct a polynomial f ∈ k[x1, . . . , xn] such
that f(p) = 1 and f(q) = 0 for all points q ∈ kn\{p}.

2. Given a function q : kn → k, show that there is a polynomial f ∈
k[x1, . . . , xn] with f(p) = g(p) for all p ∈ kn.

3. Prove that any subset of kn is the zero set of a single polynomial.

♠

Solution 65. Suppose that char(k) = p. 1. Suppose p = (p1, . . . , pn). If
n = 1, then p = (p1). Then the polynomial f(x) =

∏
q 6=p(x − q) is zero on

all of k. On the other hand, f(p) is the product of all non-zero elements in
k. But this must be one, as one sees by grouping inverses together.

This generalizes to kn by taking products over products.
2. ♥

13 Riemannian geometry - Do Carmo

13.1 Chapter 0 - Differentiable manifolds

Exercise 66 (Excercise 2). Prove that the tangent bundle of a differentiable
manifold M is orientable. ♠

Solution 66. Locally the tangent bundle is given by Rn × Rn, and if f :
Rn → Rn is a transition function between two charts, then the induced
transition function on the tangent bundle is given by f × df . Hence the
differential of the transition map is given by a block diagonal matrix with
df appearing twice. Hence the determinant is (det df)2 > 0, hence TM is
orientable. ♥

Exercise 67 (Exercise 4). Show that the projective plane P2(R) is non-
orientable. ♠

Solution 67. From the hint, we see that it is enough to find an open subset
of P2(R) that is non-orientable. ♥
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Exercise 68 (Exercise 5 - Embedding of P 2(R) in R4). Let F : R3 → R4

be given by
F (x, y, z) = (x2 − y2, xy, xz, yz).

Let S2 ⊂ R3 be the unit sphere. Observe that the restriction ϕ = F | S2 is
such that ϕ(p) = ϕ(−p), and consider the mapping ϕ̃ : P 2(R) → R4 given
by

ϕ̃([p]) = ϕ(p).

Prove that a) ϕ̃ is an immersion and b) that ϕ̃ is injective. This implies,
together with the compactness of P 2(R) that ϕ̃ is an embedding. ♠

Solution 68. Since S2 is locally diffeomorphic to P (R2), it is enough to
check that ϕ is an immersion. We do this on charts. One chart of S2 is given
by

(x, y) 7→
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

In this chart (forgetting the scaling, since by the chain rule, that will only
contribute by multiplication by a scalar), the Jacobian look like 8x 4y 6x+ 2y2 − 2 4xy

−8y 4x 4xy 2x2 + 6y2 − 2

 .

The first minor (the first two columns) is only zero if x = y = 0, and in that
case, the last minor is non-zero. Hence (at least in this chart), the mapping
is an immersion.

For b), note the xy = ab and xz = bc together imply y/z = b/c which
implies yc = bz, hence y = bc/z. Hence bc2 = bz2, hence c = ±z. Inserting
this into xz = ac gives x = ±a, and similarly y = ±b, hence ϕ̃ is injective. ♥

13.2 Chapter 2 - Affine and Riemannian connections

Exercise 69 (Exercise 8). Consider the upper half plane

R2
+ = {(x, y) ∈ R2 | y > 0},

with the metric given by g11 = g22 = 1
y2

and g12 = g21 = 0.

a) Show that the Christoffel symbols of the Riemannian connection are
Γ1
11 = Γ2

12 = Γ1
22 = 0, Γ2

11 = 1
y , Γ1

12 = Γ2
22 = − 1

y .
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b) Let v0 = (0, 1) be a tangent vector at the point (0, 1) of R2
+. Let v(t)

be the parallel transport of v0 along the curve x = t, y = 1. Show that
v(t) makes an angle t with the direction of the y-axis, measured in the
clockwise sense.

♠

Solution 69. a)
This part is easy but tedious, using the fact that

Γmij =
1

2

∑
k

(
∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij

)
gkm

where (gkm) is the inverse matrix of (gij), it beingy2 0

0 y2

 .

b)
The parallel transport satisfies the equation

0 =
dvk

dt
+
∑
ij

Γijv
j dxi
dt

for k = 1, 2, on page 53. In this case, using the values of Γkij , and the fact
that y = 1 along the curve v(t), these equations simplify to{

0 = da
dt − b(t)

0 = db
dt + a(t).

Now, since v0 was a unit vector, and paralell transport is an isometry, the
image of v0 must lie on the unit circle on each point of the curve. Thus we
can write (a(t), b(t)) = (sin θ(t), cos θ(t)) for some function θ(t). Using the
chain rule the equations transform to{

0 = − sin θ(t)θ′(t)− sin θ(t) = 0

0 = cos θ(t)θ′(t) + cos θ(t) = 0.

This implies that θ′(t) = −1, hence θ(t) = π/2− t. ♥
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