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Abstract

These are notes from the course Algebraic Geometry III. We
work over a field of characteristic zero. We start by doing some basic
representation theory. Then we introduce algebraic groups. Then
we study representations of algebraic groups. Finally we apply this
to moduli problems.

1 Introduction and motivation
The construction of parameter spaces is central to algebraic geom-
etry. Say you have some class of objects (e.g. isomorphism classes
of elliptic curves, quadrics, planes in a vector space) that you want
to correspond to the points of some space S. To do this, one takes
the set of objects and divide out by an equivalence relation. This
is very subtle, and the very first question one ask is if this question
exists at all.

A good paramter space does not exist for curves of genus g for
example. This is essentially because you want a family all of whose
fibers are isomorphic to be the trivial family, but because of auto-
morphisms, there are nontrivial families with isomorphic fibers. The
problem was solved in the 60’s by Mumford and Deligne (and their
accomplices) by the introduction of stacks, which are generalizations
of schemes. This allowed them to define Mg, a compactification of
the moduli space of genus g curves.

The introduction of stacks is somewhat unsatisfactory, however,
in that we loose geometry (there are no points).

The quotient is often a quotient by a group action, and this is
often an algebraic group action. So the situation is this: we have an
action G y X of an algebraic group G on some algebraic space X.
Then we ask when the quotient X/G exists, and if it does, in what
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sense? The naive approach of taking the points to be the orbits of
G does not work as we will see in the examples below.

Let us first consider the affine case. That is, let X = SpecA,
where A is some finitely-generated k-algebra. What should the space
X/G be? First of all, note that an action on X induce an action
on A: if f ∈ A, then we see that g · f is the function defined by
(g·f)(x) = f(g·x) for all x. We want functions onX/G to correspond
to functions that are constant on G-orbits. Thus we are led to
consider AG, namely the invariant subring of A.

Problem! Even if A is finitely generated, AG is usually not!
We end this section with a collection of examples of what can

happen and what can go wrong when studying quotients. First an
example where things are good.

Example 1.1. Consider the representation of Zn on SL2(C) given
by

Zn 3 [m] 7→

ζn 0

0 ζ−1n

 ∈ SL2(C),

where ζn is an n’th root of unity. The action on the coordinate ring
C[x, y] is given by x 7→ ζnx and y 7→ ζ−1n y. Thus the action on a
monomial is given by xayb 7→ ζa−bn xayb. This monomial is invariant
if and only if a ≡ b (mod n).

Let us plot these monomials for n = 3:

b

a

As a semigroup, this is generated by the monomials xn, xy and
yn, so that C[x, y]Zn = C[xn, xy, yn] = C[u, v, w]/(uw− vn). This is
a toric surface singularity of type An−1.

The map C2 → SpecC[x, y]Zn is of degree n, since the field
extension C(xn, xy, yn) = C(xn, xy) ↪→ C(x, y) is of degree n. The
only “bad” point is the origin, which have only one fiber. F
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Example 1.2. Let G = C∗ and let X = Cn. Consider the repre-
sentation

C∗ 3 λ 7→


λ 0

0
. . . 0

0 λ

 ∈ GLn(C).

We have an induced action on the coordinate ring, sending xi to
λxi. But the only invariants are the constants! Thus the “quotient”
is just the constant map Cn → {p}. This is not what we want.

Let us analyze the orbits of G. If x ∈ Cn is non-zero, then the
orbit G · x is the line spanned by x minus the origin. If x = ~0, then
the orbit is just the origin. Thus most orbits are not closed, and we
notice that the origin is in the closure of all orbits.

This suggests a possible solution. If we instead consider Cn\{0},
the orbits are disjoint and closed in the subspace topology. F

Example 1.3. Let again G = C∗, but consider now the represen-
tation given by

C∗ 3 λ 7→

λ 0 0 0
0 λ 0 0
0 0 λ−1 0
0 0 0 λ−1

 ∈ GL2(C).

The action extends to the coordinate ring R = C[x, y, z, w], and the
invariants areRG = C[xz, xw, yz, yw]. ThenRG ≈ C[t1, t2, t3, t4]/(t1t4−
t2t3). This is a hypersurface in C4.

We have a commutative diagram:

C4

��

φ

##
SpecRG �

� // C4

Here φ(x, y, z, w) = (xz, xw, yz, yw). Then we look at φ−1(0). A
small calculation reveals that this is the union of the xy-plane and
the zw-plane, intersecting in the origin. The problem here is that
the fiber over the origin is 2-dimensional, whereas all the other fibers
are 1-dimensional. In particular the map is not flat. F

Example 1.4. An even more serious problem is that RG might not
be finitely generated. It is difficult to construct examples where this
happens, though. Masayoshi Nagata constructed a counterexam-
ple as follows: let Gna act on A2n (in some specified way) and let
G = Gn−ra be a general linear subspace of codimension r. He proved
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that if r = 3 and n = 16, then R = C[x1, · · · , xn, y1, · · · , yn]G is not
finitely generated. See [3] for a readable account of the counterex-
ample (and related problems). F

It turns out that the “magic” property we want of an algebraic
group is that it is “linearly reductive” - a technical property implying
that RG is finitely-generated.

The plan ahead is as follows. The next section will talk loosely
about representation theory in general in order for the reader to
get a feel for the subject. Section 3 will be about algebraic groups
and some examples. Section 4 is longer and is about representa-
tions of algebraic groups. This is the technical section where linear
reductivity is introduced.

2 Representation theory in general
Let V be a vector space. Briefly, a representation of any group G
on V is just a group homomorphism ρ : G→ GL(V ).

Example 2.1. The trivial representation is given by sending every
g ∈ G to the identity transformation. F

Example 2.2. Suppose G is a finite group. Then there is an em-
bedding G ↪→ Sn, and every element of Sn can be represented by
permutation matrices (that is, matrices Mg such that Mei = eg(i)
for all g ∈ G). This defines a representation of G in kn. F

Example 2.3. Suppose G acts on a (finite) set X. Let V be the
vector space with basis identified with the elements of X. Then G
acts on V by linearity: for each g ∈ G, ρ(g) is the linear map sending
ex to egx. Such representations are called permutation representa-
tions. F

A morphism of representations (ρ, V ),(ρ′,W ) consists of com-
mutative diagrams

V
ψ //

ρ(g)

��

W

ρ′(g)

��
V

ψ
// W

for each g ∈ G. Thus, if ψ is invertible, this says that the linear
operators ρ(s), ρ′(s) are similar.
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3 Algebraic groups
Algebraic groups are group objects in the category of affine varieties.
More precisely:

Definition 3.1. Let A be a finitely generated k-algebra. An affine
algebraic group is a quadruple (A,µA, ε, ι) where µA : A → A ⊗k
A (the coproduct), ε : A → k (the coidentity), ι : A → A (the
coinverse) are k-algebra homomorphisms, satisfying the following
conditions:

1. Coassociativity. The following diagram commutes:

A
µA //

µA

��

A⊗k A

idA⊗µA

��
A⊗k A

µA⊗idA

// A⊗k A⊗k A

2. The following diagram commutes:

k ⊗k A
'

""
A

µ // A⊗k A

ε⊗idA

99

idA⊗ε %%

A

A⊗k k
'

<<

and is equal to the identity.
3. Coinverse. The following diagram commutes:

A

µ

��

ε // k

��
A⊗k A idA⊗ι

// A⊗k A ·
// A

Here the right arrow is the morphism making A a k-algebra.
The last arrow in the lower sequence is multiplication in A.

�

Example 3.2. If G = GLn, then A = k[Tij ,detT ]. Then µA is
given by

Tij 7→
n∑
h=1

Tih ⊗ Thj .
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The coinverse is given by the usual Cramer’s rule. Also ε(Tij) =
δij . F

Example 3.3. If G = Ga = (A1,+) = Spec k[X], then µA(X) =
X ⊗ 1 + 1 ⊗ X. The coidentity is ε(X) = 0, and the coinverse is
ι(X) = −X. F

Example 3.4. Let A = k[s] be the polynomial ring in one variable.
This is the coordinate ring of A1

k. We can define

µ(s) = s⊗ 1 + 1⊗ s.

Also, ε(s) = 0, and ι(s) = −s. F

Definition 3.5. An action of an affine algebraic group G = SpecA
on an affine variety X = SpecR is a morphism G×X → X defined
dually by a k-algebra morphism µR : R → R ⊗k A satisfying the
following two conditions.

1. The following diagram is commutative:

R

idR

%%

µR // R⊗k A

idR⊗ε
��

R ' R⊗k k

2. The diagram

R
µR //

µR

��

R⊗k A

µR⊗idA

��
R⊗k A idR⊗µA

// R⊗k A⊗k A

�

4 Representations of algebraic groups
Let G = SpecA be an affine algebraic group over a field k.

Definition 4.1. An algebraic representation of G is a pair (V, µV )
consisting of a k-vector space V and a k-linear map µV : V → V ⊗kA
satisfying the following two conditions:

1. The diagram

V

idV

%%

µV // V ⊗k A

idV ⊗ε
��

V ' V ⊗k k

(1)
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is commutative.

2. The diagram

V
µV //

µV

��

V ⊗k A

µV ⊗idA

��
V ⊗k A idV ⊗µA

// V ⊗k A⊗k A

is commutative. Here µA is the coproduct in the coordinate
ring of G.

�

Remark. In lieu of Definition 3.5, we see that any action of an al-
gebraic group G on an affine variety X = SpecR is a representation
of G on the infinite-dimensional k-vector space R = Γ(X,OX).

Remark. Mumford and Fogarty calls this a dual action of G on V ,
in their famous “Geometric Invariant Theory” [4].

We often drop the subcript from µV unless confusion may arise.
The same comment applies to tensor products. They will always be
over the ground field unless otherwise stated. We will sometimes
refer to a representation (V, µV ) sometimes as “a representation µ :
V → V ⊗A” and sometimes as just “a representation V ”.

Definition 4.2. Let µ : V → V ⊗ A be a representation of G =
SpecA. Then:

1. A vector x ∈ V is said to be G-invariant if µ(x) = x⊗ 1.

2. A subspace U ⊂ V is called a subrepresentation if µ(U) ⊆
U ⊗A.

�

Proposition 4.3. Every representation V of G is locally finite-
dimensional. Precisely: every x ∈ V is contained in a finite-dimensional
subrepresentation of G.

Proof. Write µ(x) as a finite sum
∑
i xi⊗ fi for xi ∈ V and linearly

independent fi ∈ A. This we can always do, by definition of tensor
product and bilinearity. Let U be the subspace of V spanned by the
vectors xi.

Now, by the commutativity of the diagram (1) it follows that

x =
∑
i

ε(fi)xi.
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By the commutativity of the second diagram in the definition, it
follows that∑

i

µV (xi)⊗ fi =
∑
i

xi ⊗ µA(fi) ∈ U ⊗Ak ⊗k A.

Because each term of the right-hand-side is contained in U⊗A⊗
A, it follows that µV (xi) is contained in U since the fi are linearly
independent.

Thus x is contained in the finite-dimensional representation µV
∣∣
U

:
U → U ⊗A.

We can classify representations of Gm easily. They are all direct
sums of “weight m”-representations, that is, representations of the
form

V → V ⊗ k[t, t−1], v 7→ v ⊗ tm.

Proposition 4.4. Every representation V of Gm is a direct sum
V = ⊕m∈ZV(m), where each V(m) is a subrepresentation of weight
m.

Proof. For each m ∈ Z, define

V(m) = {v ∈ V | µ(v) = v ⊗ tm}.

This is a subrepresentation of V : we must see that µ(V(m)) ⊂ U⊗A,
but this is true by construction. It is also clear that is has weight
m. Next we show that V = ⊕m∈ZV(m). Write

µ(v) =
∑
m∈Z

vm ⊗ tm ∈ V ⊗ k[t, t−1].

Using the first condition in the definition of a representation,
we get that v =

∑
m∈Z ε(t

m)vm. It remains to check that each
vm ∈ V(m) (we can forget the scalars ε(tm)). But from definition ii),
it follows that ∑

µ(vm)⊗ tm =
∑

vm ⊗ tm ⊗ tm,

so that indeed µ(vm) = vm ⊗ tm, as wanted.

Example 4.5. An action of Gm on X = SpecR is equivalent to
specifying a grading

R =
⊕

m∈ZR(m) R(m)R(n) ⊂ R(m+n).
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The invariants under this action are thus the homogeneous elements
of weight zero, that is, the subring R(0). Moreover, we have a spe-
cial operator. There is a linear endomorphism E of R that sends
f =

∑
fm 7→

∑
mfm, and it is a derivation of R, called the Euler

operator. We have RGm = kerE.
To see that E is a derivation, we must check that E(fg) =

fE(g) + gE(f). The operator is homogeneous, so it is enough to
check on homogeneous elements. So let fm, gn be of degree m,n,
respectively. Then

E(fmgn) = (m+n)fmgn = gn(mfm)+fm(ngn) = gnE(fm)+fmE(gm),

as wanted. F

A character is a homomorphism G → C∗, so we have a corre-
sponding notion of characters in this “dual” world:

Definition 4.6. Let G = SpecA be an affine algebraic group. A
1-dimensional character of G is a function χ ∈ A satisfying

µA(χ) = χ⊗ χ ι(χ)χ = 1.

�

Lemma 4.7. The characters of the general linear group GL(n) =
Spec k[xij ,detX] are precisely the integer powers of the determinant
(detX)n for n ∈ Z.
Definition 4.8. Let χ be a character of an affine algebraic group
G, and let V be a representation of G. A vector v ∈ V satisfying

µV (v) = v ⊗ χ

is called a semi-invariant of G with weight χ. The semi-invariants of
V belonging to a given character χ form a subrepresentation Vχ ⊂ V
of V . �

We will often change the point of view depending upon the situ-
ation. Sometimes we think of a representation of an algebraic group
as a k-linear map V → V ⊗k A satisfying some axioms, and some-
times we think of a representation as a group G acting on a vector
space V in the usual fashion.

Proposition 4.9. Let µ : V → V ⊗k A be a representation of an
algebraic group G. Let g ∈ G(k) be a k-valued point and mg ⊆ A
the corresponding maximal ideal. Denote by ρ(g) the composition

V
µ−→ V ⊗k A

mod mg−−−−−−→ V ⊗k k ' V.

Then, if A = Γ(G,OG) is an integral domain, a vector v ∈ V such
that ρ(g)(v) = v for all g ∈ G(k) is a G-invariant.
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Proof. We need to check that µ(v) = v ⊗ 1. First, since G is
the spectrum of a finitely generated k-algebra, we can write A as
k[y1, · · · , ym]/I for some prime ideal I. Then the same trick as in
the proof of Proposition 4.3 works. Write µ(v) =

∑
vi ⊗ fi with

fi ∈ A for all i. Since the composition is the identity, we have that
fi ≡ 1 (mod mg) for all g ∈ G. This implies that fi − 1 is con-
tained in the Jacobson radical of A. But A is an integral domain,
so fi − 1 = 0.

Thus, in a sense, the two notions of G-invariance coincides.

4.1 Algebraic groups and their Lie spaces
In the spirit of Grothendieck (or maybe the spirit of Newton?1), we
will consider infinetesimal neighbourhoods of the identity e ∈ G =
SpecA.

Definition 4.10. Let R be a k-algebra and M an R-module. An
M -valued derivation is a k-linear map D : R → M satisfying the
Leibniz rule D(xy) = xD(y) + yD(x) for x, y ∈ R. �

The set of M -valued derivations is also an R-module, denoted
by Derk(R,M). This is used to define tangent spaces in algebraic
geometry as follows: Let p ∈ SpecA = X be a closed point. Then we
have a local ring OX,p and a quotient map OX,p → OX,p /mp ' k.
Then the k-module (mp/m

2
p)
∨ is called the Zariski tangent space of

p ∈ X. In fact:

Proposition 4.11. We have isomorphisms of OX,p-modules:

Derk(OX,p, k) ' (mp/m
2
p)
∨ ' Homk−alg(OX,p, k[ε])

Proof. We first prove the existence of the first isomorphism.
Send D ∈ Derk(OX,p, k) to D

∣∣
mp

. This is well-defined if D van-
ishes on m2

p. But if m1,m2 ∈ mp, then

D(m1m2) = m1D(m2) +m2D(m1) = 0 ∈ OX,p /mp.

So the map is well-defined.
We have a map in the opposite direction as well. Let ` : mp/m

2
p →

k be a linear functional on the k-vector space mp/m
2
p. Define D` to

be the k-linear map D` : OX,p → k given by

D`(f) =


0 if f ∈ k
`(f) if f ∈ mp

0 if f ∈ m2
p.

1Or Leibniz, or Lie...
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I know claim that this is a derivation. Write f, g ∈ OX,p as c +
m, c′ +m′ where c is outside the maximal ideal and m ∈ mp. Then

D`(fg) = D`(cc
′ + cm′ + c′m+m′m′) = cD`(m

′) + c′D`(m),

by definition of D`.
It is easy to check that these two maps are inverse to each other.
We give an isomorphism between the first and the third module.

We begin first by studying the elements of Homk−alg(OX,p, k[ε]). As
a k-vector space, k[ε] = k⊕εk. Thus every f ∈ Homk−alg(OX,p, k[ε])
can be written as f = λ(f) + εδ(f). But we have a diagram

k

OX,p k[ε]

k

f

Thus λ(f)(x) = x (mod mp) = x(p). Thus the “constant part”
of f is determined by default. Furhermore, since f is an algebra
morphism, we must have that

f(xy) = (xy)(p) + εδ(f)(xy)

f(x)f(y) = (x(p) + εδ(f)(x))(y(p) + εδ(f)(y))

= x(p)y(p) + ε (x(p)δ(f)(y) + y(p)δ(f)(x)) .

Thus we see that the function δ(f) : OX,p → k is a derivation. We
thus have a k-linear map Homk−alg(OX,p, k[ε]) → Derk(OX,p, k)
by f 7→ δ(f). The inverse map is given by the function D 7→
(x 7→ x(p) + εD(x)).

Remark. This smells of some kind of Taylor expansion. In fact,
this can be used to compute tangent spaces of Hilbert schemes. Let
X ⊂ Pn be a projective variety, and [X] ∈ HilbP (t) the correspond-
ing point in the Hilbert scheme. By the above, the set of morphisms
Spec k[ε]→ HilbP (t) are in one to one correspondence with the tan-
gent space of HilbP (t) at [X]. But by the universal property of the
Hilbert scheme, this set is in one-one correspondence with the set of
flat families X→ Spec k[ε]. But these are classified by global sections
of NX/Pn , the normal bundle.

In fact, the module of derivations is what is called a corepre-
sentable functor. There is anR-module ΩR/k such that Derk(R,M) =
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HomR(ΩR/k,M), functorially in M . This is the module of Kähler
differentials.

Example 4.12. We compute the Zariski tangent space of SLn at the
identity element. Note that SLn = Spec k[xij ]/(detX−1) = SpecR.
Let I = (detX−1), the principal ideal generated by detX−1. There
is an exact sequence

0→ Derk(R, k)→ Derk(k[xij ], k)→ Homk(I/I2, k)

of R-modules. The first map is just the pullback of the projection
k[xij ] → R. The second map send D ∈ Derk(k[xij ], k) to the re-
striction D

∣∣
I/I2

. This does not a priori make sense. But since we
are considering homomorphisms to k = R/me, it is easy to see that
any D vanishes on I2. Thus the Zariski tangent space of SLn at the
identity can be computed as the kernel of the map to the right. The
middle term is spanned as a k-vector space by ∂

∂xij

∣∣∣
X=In

, so that

we can identify it with End(V ).
Since I is principal, it follows that Homk(I/I2, k) ' Homk(A, k) '

k. Doing all the identifications, the right map is then given by
D 7→ D(detM)

∣∣
In
. A computation gives that D(detM)

∣∣
In

= trM ,
so that the kernel is given by the matrices with trace zero. F

A derivation is a k-linear map vanishing at m2
p. The generaliza-

tion of this are local distributions:

Definition 4.13. Let mp ∈ SpecX. A local distribution with sup-
port mp ∈ X is a k-linear map α : R → k with the property that
α(mNp ) = 0 for some N ∈ N.

The minimal N such that α(mN+1
p ) = 0 is called the degree of the

distribution. Thus the distributions of degree 1 are the derivations
(up to isomorphism). �

We can identify the set of local distributions of degree ≤ d with
k-module (R/md+1

p )∨. The surjections R/md+1
p → R/mdp induce

injections (R/mdp)
∨ ↪→ (R/md+1

p )∨. We can thus identify the set of
distributions supported at p with lim−→(R/mip)

∨ =
⋃
i(R/m

i
p)
∨.

4.1.1 The distribution algebra

If now G = SpecA is an affine algebraic group with coordinate ring
A, then denote by H(G) the vector space of distributions α : A→ k
supported at e ∈ G. The Zariski tangent space at e ∈ G is called
the Lie space of G and is denoted by g ⊂ H(G).
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Definition 4.14. Let α, β ∈ H(G). Then we define the convolution
product α ? β to be the composition

A
µA−−→ A⊗k A

α⊗β−−−→ k ⊗k k ' k.

�

Lemma 4.15. The convolution product α ? β is again a local dis-
tribution supported at the identity with

degα ? β ≤ degα+ deg β.

Proof. The fact that (e, e) 7→ e under m : G×G→ G, is equivalent
to

µ−1A (m⊗m) = m,

from which it follows that m⊗m = µA(m). This is again contained
in m⊗A+A⊗m. Since µA is a ring homomorphism, we have

µA(ma+b+1) ⊂
∑

i+j=a+b+1

mi ⊗mj .

Taking a = degα and β = deg β proves the lemma.

Note that the map ε : A → k corresponding to e ∈ G is a
distribution of degree zero.

Lemma 4.16. The structure map ε : A → k from Definition 3.1
(“evaluation at the identity”) is an identity element for the convolu-
tion product.

Proof. This follows from the following diagram:

A
µA−−→ A⊗k A

ε⊗id−−−→ k ⊗A id⊗α−−−→ k ⊗ k ' k.

The composition is equal to ε ? α, but by Part 2 of Definition 3.1, it
is also equal to α.

It follows from coassociativity that ? is associative (easy diagram
chase). This makes H(G) into an associative algebra over k, called
the distribution algebra of the algebraic group G.

[[EXAMPLES]]
Now let µV : V → V ⊗ A be an algebraic representation, with

associated representation ρ : G→ GL(V ). Let α ∈ H(G) be a local
distribution. Then composition

V
µV−−→ V ⊗k A

idV ⊗α−−−−→ V ⊗ k ' V
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is an endemorphism of V , which we denote by ρ̃(α) ∈ End(V ).
Clearly the map α 7→ ρ̃(α) is linear in α. It is also associative, so
we get a ring homomorphism

ρ̃ : H(G)→ EndV. (2)

Thus V is a (non-commutative) H(G)-module (if α : A → k is a
distribution and v ∈ V a vector, then α · v is ρ̃(α)(v)).

Consider the action of G on itself by conjugation: G × G → G,
(g, h) 7→ ghg−1. Since e ∈ G is fixed under conjugation, this induces
an action on each quotient A/mn, and on its dual space. It follows
that H(G) becomes a linear representation of G.

Given a representation ρ : G→ GL(V ), the space EndV also be-
comes a linear representation by mapping g ∈ G to (T 7→ ρ(g)Tρ(g)−1) ∈
GL(End(V )).

Lemma 4.17. With respect to these actions, we have that the map

ρ̃ : H(G)→ End(V )

is a homomorphism of G-representations.

Proof. We must show that the map ρ̃ is G-equivariant. [[HOW TO
DO THIS??]

In particular, the Lie space g ⊂ H(G) is a subrepresentation of
H(G). This is called the adjoint representation and is denoted by
Ad : G→ GL(g).

4.1.2 The Casimir operator

Let κ : g × g → k be an inner product on the Lie algebra g of G.
That is, κ is a symmetric and nondegenerate bilinear form on g.
We will assume that κ is invariant under the adjoint representation
Ad : G → GL(g). This just means that for X,Y ∈ g, we have
κ(g ·X, g · Y ) = κ(X,Y ).

Definition 4.18 (The Casimir element). Let κ be as above. Let
X1, · · · , XN ∈ g be a basis for g and let X ′1, · · · , X ′n ∈ g be its dual
basis with respect to κ. Then the distribution

Ω := X1 ? X
′
1 + . . .+XN ? X ′N ∈ H(G)

is called the Casimir element over G with respect to κ. �

Proposition 4.19. The Casimir element Ω is independent of choice
of basis.
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Proof. Suppose {Y1, · · · , YN} be another basis and let {Y ′1 , · · · , Y ′N}
be its dual basis. Then

Yi =

N∑
j=1

aijXj

and

Y ′i =

N∑
j=1

a′ijX
′
j ,

for some matrices A = (aij) and A′ = (a′ij) satisfying ATA′ = I. To
see this, compute κ(Yi, Y

′
j ).

Then:

N∑
i=1

Yi ? Y
′
i =

N∑
i=1

 N∑
j=1

aijXj

 ?

(
N∑
k=1

a′ikX
′
k

)

=

N∑
j,k

(
N∑
i=1

aija
′
ik

)
Xj ? X

′
k

=
∑
j,k

δjkXj ? X
′
k = Ω.

This proves the statement.

Remark. This can also be seen as follows: the non-degenerate form
κ gives a canonical isomorphism of g with g∗. This isomorphism is
an element of Hom(g, g∗) ' Hom(g, k) ⊗k g∗ ' g∗ ⊗ g∗ ' (g ⊗ g)∗,
and writing the isomorphism in one basis gives exactly the Casimir
element.

Recall that Ad(g) : GL(g) → GL(g) is the endomorphism of
GL(g) given by v 7→ dcg(v) where cg is conjugation by g. Since the
inner product κ is assumed to be G-invariant, the sets

{Ad(g)(X1), . . . ,Ad(g)(Xn)}

and
{Ad(g)(X ′1), . . . ,Ad(g)(X ′n)}

are again dual bases. We deduce from this and the previous propo-
sition that:

Corollary 4.20. The Casimir element Ω ∈ H(G) is invariant under
the action of G on the distribution algebra H(G).
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Now let ρ : G → GL(V ) be any representation of G. This
is an H(G)-module via ρ̃ : H(G) → EndV from Equation 2. In
particular, the Casimir element determined an endomorphism of V ,
ρ̃(Ω) : V → V , called the Casimir operator.

By the Corollary and Lemma 4.17 ρ̃(Ω) is invariant under the
conjugation action of G on EndV . Moreover, since g kills the G-
invariant V G ⊂ V , so does the Casimir operator [[ HVA MENES
HER??]]. We conclude:

Corollary 4.21. The Casimir operator is a G-endomorphism of
each representation V of G and

V G ⊂ ker(ρ̃(Ω)).

This result will be crucial when proving Hilbert’s finiteness the-
orem.

4.2 Linear reductivity
Definition 4.22. An algebraic group G is said to be linearly reduc-
tive if, for every epimorphism ϕ : V →W of G-representations, the
induced map of G-invariants ϕG : V G →WG is surjective. �

Proposition 4.23. Every finite group G is linearly reductive.

Proof. Let ϕ : V →W be the given epimorphism of representations.
Let R : V → V G ⊂ V be given by v 7→

∑
g∈G g · v. Let w ∈ WG.

Then it is an easy calculation to check that ϕ(R(v)) = R(ϕ(v)), from
which it follows that ϕ(R(v)) = w (note that R

∣∣
WG = idWG).

The homomorphism R above is called the Reynolds operator.

Proposition 4.24. The following are equivalent:

i) G is linearly reductive.

ii) For every epimorphism V →W of finite dimensional G-representations,
the induced map V G →WG is surjective.

iii) If V is any finite-dimensional representation and U ⊆ is a
proper subrepresentation and v̄ ∈ V/U is G-invariant, then
the coset v + U (for any lifting of v̄) contains a non-trivial
G-invariant vector.

Proof. i) ⇒ ii) is trivial. For ii) ⇒ iii), apply ii) to the quotient
map V → V/U . Then V G → (V/U)G is surjective. This implies
that for every nonzero v̄ ∈ (V/U)G, there exists a G-invariant v ∈
π−1(v) = U + v̄.

16



iii) ⇒ i) is hardest. Suppose φ : V → W is an epimorphism of
representations (not necessarily finite-dimensional). Suppose φ(v) =
w ∈WG for some v ∈ V .

By Proposition 4.3 there exists a finite-dimensional subrepresen-
tation V0 ⊆ V containing v. Now v ∈ V0 is G-invariant modulo
U0 := V0 ∩ kerφ (since V/ kerφ ' W as G-representations), so by
iii), there exists a G-invariant vector v′ ∈ V0 such that v′ − v ∈ U0.
But φ(v′) = w, so φG : V G →WG is surjective.

Lemma 4.25. Direct products of linearly reductive groups are lin-
early reductive. If H ⊂ G is a normal subgroup and G is linearly
reductive, then so is G/H. Moreover, if both H and G/H are lin-
early redutive, then so is G.

Proof. Suppose given an endomorphism of representation of G×H:
V →W . In particular, they are representations of G,H separately,
by the rule g · v = (g, e) · v. In particular, if an element w ∈ W
is G ×H-invariant, it is also G,H-invariant. Thus by assumption,
there is an G,H-invariant v ∈ V mapping to w. But if something
is G,H-invariant, it is also G×H-invariant, since G,H commute in
G×H.

Similarly, every G/H-representation gives a G-representation, by
the rule g · v = ḡ · v, where ḡ denotes the class of g in G/H. Now
if w ∈WG/H is G/H-invariant, then it is by definition G-invariant,
and by linearly reductivity of G, the map is surjective.

Finally, if both H and G/H are linearly reductive, suppose φ :
V →W is a surjection of G-representations. This is also a surjection
ofH-representations, and sinceH was linearly reductive, we get that
V H → WH is surjective. It follows that the map φ and the vector
spaces V,W splits as (φH , φ′) : V H ⊕ V ′ → WH ⊕ W ′, where H
acts trivially on the second factor. This implies that G/H acts on
V ′,W ′, and it follows that V ′ →W ′ is surjective.

Proposition 4.26. Every algebraic torus (Gm)N is linearly reduc-
tive.

Proof. By the lemma, it suffices to prove this for N = 1. We use
Proposition 4.24 iii). By Proposition 4.4, we can write a represen-
tation V and a subrepresentation U as

V =
⊕
m∈Z

V(m) and U =
⊕
m∈Z

U(m).

Here U(m) ⊂ V(m). An element v ∈ V/U is Gm-invariant if any
lifting of v to V lies in U(m) for m 6= 0. Thus v(0) is Gm-invariant
and lies in the coset v + U .
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The classical example of a group that is not linearly reductive is
the affine line A1 under addition:

Example 4.27. Consider the 2-dimensional representation given
by

Ga → GL2, t 7→

1 t

0 1

 .

This is a representation by the rules of matrix multiplication. Alge-
braically, this as follows: let x, y be a basis for V . Then we define a
k-linear map V → V ⊗k k[t] by x 7→ x ⊗ 1 and y 7→ x ⊗ t + y ⊗ 1.
This extends to a representation of k[V ] = k[x, y] in the obvious
way. Then we can define an epimorphism of representations by
sending k[x, y] → k[x, y]/(x) ' k[y]. Taking invariants, we get that
k[x, y]Ga = k[x] but k[y]Ga = k[y], but the map sends x to 0, so is
not surjective. F

The main aim of this section is to prove that SLn is linearly
reductive. From this it will follow that also GLn is linearly reductive,
because it fits into an exact sequence

1→ k∗ → GLn → SLn → 1

because, by Lemma 4.25, the middle term must also be linearly
subsection.

Let U be a finite-dimensional vector space. The Lie algebra of
GL(U) is canonically isomorphic to End(U), and we have a nonde-
generate inner product on End(U) given by the trace:

κ : End(U)× End(U)→ k, (f, g) 7→ tr(fg).

Write κ(f) := κ(f, f).

Lemma 4.28. The inner product κ is invariant under the adjoint
action of GL(U). In other words:

κ(αfα−1) = κ(f)

is satisfied for all f ∈ End(U) and α ∈ GL(U).

Proof. The trace is just the natural map End(U) ' U ⊗ U∗ → k
given by (v, λ) 7→ λ(v). Under this identification, the adjoint action
of GL(U) on End(U) is given by

g · (v ⊗ λ) = (gv ⊗ (w 7→ λ(g−1w)).

Then we see that the trace map is given by

g · (v ⊗ w) 7→ λ(g−1gv)λ(v).

18



The Lie algebra sl(U) of SL(U) is the sub Lie-algebra of g(U)
given by the traceless matrices.

Lemma 4.29. The inner product κ is non-degenerate when re-
stricted to sl(U), and invariant under the adjoint action.

Proof. κ is non-degenerate on End(U) and sl(U) is the orthogonal
complement of the identity element IU . Thus every element v ∈
End(U) can be written uniquely as s + j with s ∈ sl(U) and j a
multiple of IU . Suppose κ(s, s′) is zero for all s′ ∈ sl(U). Since κ
is non-degenerate on EndU , this implies that s is a multiple of the
identity element. But s was assumed to be traceless, so s is zero.

Example 4.30. The Casimir element of SL(2) is

Ω = e ? f + f ? e+
1

2
h ? h

where e, f, h are

e =

0 1

0 0

f =

0 0

1 0

 h =

1 0

0 −1

 .

This is so because e, f are dual with respect to κ, and h have dual
1
2h since tr(h2) = 2. F

Proposition 4.31. For a representation ρ : SL(n) → GL(V ), the
following are equivalent:

1. The representation is trival (that is, ρ(g) = idV for all g).
2. ρ̃(Ω) = 0.
3. tr ρ(Ω) = 0.

Proof. i) ⇒ ii) trivially by Corollary 4.21 once one notices that the
representation is trivial if and only if V G = V . ii) implies iii) even
more trivally. So we have to show that iii) ⇒ i).

Let T ⊂ SL(n) be the torus subgroup of diagonal matrices and
h ⊂ sl(n) its Lie algebra. Then we can decompose V as

V =
⊕

χ∈X(T )

Vχ.

Each χ : T → Gm corresponds to a linear form χ̄ : h → k with
integer coefficients2. To see this, note that a homomorphism T →
Gm is given by (t1, · · · , tn) 7→ t

∑
tiλi for some λi.

2Note that since chark = 0, the integer are naturally embedded in k.
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For each h ∈ h we have:

tr ρ̃(h)2 =
∑
χ6=1

(dimVχ)χ̄(h)2 ∈ Z.

Thus if tr ρ̃(h) = 0 for all h ∈ h, we must have dimVχ = 0 for all
χ 6= 1. In other words, V is the trivial representation of the torus
T , or equivalently, ρ(t)(v) = v for all t ∈ T ⊆ SL(n). The same
argument works for any subgroup conjugate to T , so that V is the
trivial representation for the subset of all diagonalizable matrices.
But these are dense in SL(n), so V is trival as a representation of
SL(n) as well.

Thus the proposition is proved if we can show that tr ρ̃(Ω) = 0
implies that tr ρ̃(h) = 0 for all h ∈ h.

We will do this for SL(2). In this case h is spanned by the single
matrix h from Example 4.30. The Casimir operator [SKJØNNER
IKKE!!!!]

4.3 Finite generation
Let G be an algebraic group acting on a polynomial ring S.

Theorem 4.32 (Hilbert). If G is linearly reductive, then the ring
of invariants SG is finitely generated as a k-algebra.

Proof. The ring SG inherits the grading from S, i.e. we have a direct
sum composition

SG =

∞⊕
e=0

SG ∩ Se.

Let SG+ = ⊕∞e=1S
G ∩ Se, and denote by J the ideal generated by

SG+ . By Hilbert’s basis theorem, J is generated by finitely many
polynomials f1, · · · , fN ∈ SG+ . In other words, we have a surjective
S-module map

N⊕
i=1

S
(f1,··· ,fN )−−−−−−−→ J → 0.

Now we claim that in fact SG is generated as a k-algebra by f1, · · · , fN .
Let h ∈ SG, homogeneous. We want to show that h ∈ k[f1, · · · , fN ]
by induction on deg h. If deg h = 0, this is obvious. If deg h > 0, h
belongs to J , also to JG since h ∈ SG. View J as a representation of
G. The surjective module map above is a map of G-representations,
so by linear reductivity, the induced map

N⊕
i=1

SG
(f1,··· ,fN )−−−−−−−→ JG → 0
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is also surjective. Therefore there exists invariant polynomials h′1, . . . , h′N ∈
SG such that h =

∑N
i=1 h

′
ifi. But all of the fi have deg fi > 0, we

must have deg h′i < deg h. By the inductive hypothesis, we have
h′i ∈ k[f1, . . . , fN ], and thus h ∈ k[f1, · · · , fN ] also.

Suppose now that G acts on a finitely generated k-algebra R.
It follows easily from Hilbert’s theorem that also RG is finitely-
generated when G is reductive.

Lemma 4.33. Suppose that an algebraic group G acts on a finitely-
generated k-algebra R. Then there exists generates r1, · · · , rN of
R whose k-linear span 〈r1, . . . , rN 〉 ⊂ R is a G-invariant vector
subspace.

Proof. Let s1, . . . , sM ∈ R be any set of generators. Now each si
is contained in a finite-dimensional subrepresentation Vi of R. Now
extend s1, . . . , sM to a basis r1, . . . , rN of

∑M
i=1 Vi ⊂ R.

To paraphrase Mukai, this says that “an affine algebraic variety
acted on by an algebraic group can always be equivariantly embed-
ded in an affine space AN on which G acts linearly”.

Theorem 4.34. If a linearly reductive group G acts on a finitely
generated k-algebra R, then the invariant ring RG is finitely gener-
ated.

Proof. Start by choosing generators r1, . . . , rN of R as in the lemma.
Then we have a surjection S = k[x1, . . . , xN ] → R. Taking invari-
ants and using Hilbert’s theorem, it follows immediately that RG is
finite-generated.

5 The construction of quotient varieties
In this chapter we will actually construct some objects we will call
quotients.

5.1 Affine quotients
We begin with an example.

Example 5.1. Let G = C∗ act on k2 by t · (x, y) = (tx, t−1y). We
have three types of orbits.

1. The origin (0, 0) is an orbit consisting of one point.
2. The axes x = 0, y = 0 are two other orbits.
3. All other orbits are hyperbolas xy = a with a 6= 0.
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The action on the coordinate ring is given by x 7→ λ−1x and y 7→ λx.
Thus the only invariant is the monomial xy. We thus get a projection
map φ : A2 → A1 given by (x, y) = xy.

This “quotient map” separates the third type of orbits, but can-
not distinguish between the orbits 1. and 2, all of which map to
zero. F

Theorem 5.2. Suppose that a linearly reductive group G acts on
an affine variety X. Given two orbits O,O′ ⊂ X, the following
conditions are equivalent:

i) The closures of O and O′ have a common point, O ∩O′ 6= ∅.
ii) O and O′ fail to be separated by G-invariants k[X]G.

Proof. i ⇒ ii is clear: any G-invariant function is automatically
constant on orbits, and by continuity constant on orbit closures. If
the orbit closures intersect, then anyG-invariant function is constant
on O ∪O′ also.

We prove the converse of ii ⇒ i. Namely, if olO ∩ O′ = ∅, then
O and O′ are separated by k[X]G.

The condition is equivalent to I(O) + I(O′) = k[X]. Since all
three terms are G-invariant, we have a map of G-representations

I(O)⊕ I(O′)
+ // k[X].

Taking G-invariants, we get a surjection I(O)G ⊕ I(O′)G → k[X]G

since G is linearly reductive. Thus there exist a functions f, f ′ such
that f+f ′ = 1 and f(O) = 0, f ′(O′) = 0. But f(O′) = 1−f ′(O′) =
1, and f ′(O) = 1− f(O) = 1, so f and f ′ separate O and O′.

Corollary 5.3. If G is a linearly reductive group acting on an
affine variety X, then distinct closed G-orbits are separated by the
G-invariants k[X]G.

Proof. Distinct closed orbits are automatically disjoint.

Corollary 5.4. Given an orbit, the set S of orbits with closure
meeting this orbit contains exactly one closed orbit. Moreover, this
orbit is contained in the closure of every other orbit in the same set.

Proof. The set of such orbits can contain at most one closed set by
the previous corollary. Let O be an orbit with minimal dimension
of S. We claim that O is closed. Suppose not. Then O\O is a
nonempty union of G-orbits in S because O\O ∩ O 6= ∅, and is of
smaller dimension, contradiction.

For the second part...
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Consider again the map φ : X → An, x 7→ (f1(x), . . . , fn(x)),
where the fi are the generators of RG.

Proposition 5.5. The image φ(X) ⊂ An is closed.

Proof. Consider the homomorphism of R-modules

π : R⊕ · · · ⊕R→ R, (b1, . . . , bn) 7→
∑

bi(fi − ai).

This is a homomorphism of G-representations. The induced map
has image ma ⊂ RG, corresponding to the point (a1, · · · , an). This
implies that π cannot be surjective. Therefore its image is contained
in some maximal ideal m ⊂ R (a priori not a unique ideal). But
m ∩RG is maximal in RG and therefore coincides with ma.

Thus a ∈ φ(X) is the image of the point corresponding to m.

Definition 5.6. We denote the affine variety SpecRG by X//G.
The inclusion RG ⊂ R determines a morphism of affine varieties
Φ : X → X//G, which we call the affine quotient map. �

We sum this up in a theorem:

Theorem 5.7. If G is a linearly reductive group acting on an affine
variety X, then the affine quotient map

Φ : X → X//G = Spec
(
k[X]G

)
is surjective and gives a one-to-one correspondence between points
of X//G and closure-equivalence classes of G-orbits in X.

In addition: if Z ⊂ X is closed and G-invariant, then Φ(Z) is
closed.

Proof. Only the last claim needs proof.
Let a ⊂ R be the ideal of Z. This is G-invariant, so G acts on

R/a. By linear reductivity, we get a surjective map RG → (R/a)G.
The kernel is RG ∩ a and so

RG/(RG ∩ a) ' (R/a)
G
.

The left hand side is the coordinate ring of the closure of Φ(X) in
X//G. The right hand side is the coordinate ring of Z//G. Thus,
applying Spec(−), we get an isomorphism

Z//G ' Φ(Z).

But as we have seen, the affine quotient map Z → Z//G is surjective,
so we must have Φ(Z) = Φ(Z).
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5.2 Stability
Definition 5.8. Suppose that a linearly reductive group G acts on
an affine variety X. A point x ∈ X is said to be stable for the action
of G if the following two conditions hold:

1. The orbit Gx ⊂ X is closed.

2. The stabilizer subgroup Stab(x) = {g ∈ G | gx = x} is finite.
We denote the set of all stable point by Xs ⊂ X. �

The reason we don’t want unstable points is that if the stabilizers
have positive dimension, the dimension of the quotient will be too
low.

Proposition 5.9. Let Z ⊂ X be the set

{x ∈ X | dimStab(x) > 0}.

Then Xs is the complement in X of Φ−1(Φ(Z)).

Proof. Suppose Φ(x) ∈ Φ(z). If x ∈ Z, then z 6∈ Xs. If x 6∈ Z,
then the fiber Φ−1(Φ(x)) contains at least two G-orbits (the orbit(s)
containing Z and the orbit(s) containing x), and by Corollary 5.4
the orbit Gx cannot be closed, so the first condition is violated. This
shows Φ−1(Φ(Z)) ⊂ X\Xs. The converse is similar [....].

Remark. We have Xs = X if and only if all points have finite
stabilizer.

Being stable is an open condition. Equivalently, Z is a closed
set:

Proof. Consider the map

s : G×X → X ×X, (g, x) 7→ (gx, x).

Then let Z̃ be s−1(∆), where ∆ is the diagonal. Then consider the
projection

π : Z̃ → X, (g, x) 7→ x.

The fiber π−1(x) is canonically isomorphic to Stab(x). Now it is
well-known that the dimension of the fibers is an upper semiconti-
nous function, so it follows that the positive-dimensional locus Z is
a closed set. See for example Chapter 11 in Vakil. Chapter I.6.3 in
Shafarevich, or EGA IV 13.1.3.

It follows at once that...
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Proposition 5.10. ... the stable set Xs ⊂ X and its image Φ(Xs) ⊂
X//G are open sets.

Theorem 5.11. Suppose that a linearly reductive group G acts on
an affine variety X, and suppose that x ∈ X is a stable point for this
actin. Then for any y ∈ X\Gx, there exists an invariant function
f ∈ k[X]G such that f(x) 6= f(y).

Proof. We apply Theorem 5.2: suppose there does not exist a func-
tion separating x and y. Then by the theorem, the closures Gx and
Gy intersect in a common point. Since x is stable Gx is closed, and
this implies Gx ⊂ Gy. Now, dimGx = dimG since x have finite
stabilizer, and so dimGx ≥ dimGy, hence Gx = Gy, contrary to
y ∈ X\Gx.

For future reference, here are a few definitions.

Definition 5.12. Let X be a scheme and G an (affine) algebraic
group, withG acting onX. Then a categorial quotient is a morphism
π : X → Y such that

1. π isG-equivariant withG acting trivially on Y . In other words:
π(gx) = π(x) for all g, x. Or:

G×X

π2

��

µ // X × Y

π

��
X

π
// Y

should commute.
2. π : X → Y is universal with respect to 1. In other words: if

φ : X → Z is any other such map (φ(gx) = φ(x)), then there
should exist a unique γ : Y → Z making γ ◦ π = φ:

X
φ //

π

��

Z

Y

∃!γ

>>

�

Clearly a categorial quotient is unique if it exists. In fact, SpecRG

is an example. But as we have seen, categorial quotients can be quite
bad on some occasions: if G = C∗ acts by scaling lines through the
origin in A2, then, as we have seen, RG = k, so the categorial quo-
tient is just a point.
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Definition 5.13. A good categorial quotient is a map π : X → Y
such that:

1. If U ⊂ Y is open, then OY (U) → OX(π−1(U)) induces an
isomorphism OY (U)

∼−→ OX(π−1(U))G.

2. If W ⊂ X is closed and G-invariant, then π(W ) is closed in Y .

3. If W1,W2 are closed, disjoint and G-invariant, then π(W1) ∩
π(W2) = ∅.

�

It is an exercise to see that good implies categorical. Also, the
following is true:

Proposition 5.14. For a good categorial quotient π : X → Y :

1. π is surjective.

2. If U ⊂ X//G is open, then the restriction

π
∣∣
π−1(U)

: π−1(U)→ U

is also a good categorial quotient.

3. π(x) = π(y) ⇔ Gx ∩Gy 6= ∅.

Proposition 5.15. Let X → X//G be a good categorical quotient.
Then the following are equivalent:

1. All orbits are closed.

2. If x, y ∈ X have π(x) = π(y) then Gx = Gy.

3. π induces a bijection between G-orbits and closed points of
X//G.

4. The image of G×X → X ×X, (g, x) 7→ (gx, x) is isomorphic
to X ×X//G X.

Definition 5.16. If any of the equivalent conditions of the propo-
sition holds, then we say that X → Y is a geometric quotient, and
we write it as X/G. �

5.3 Moduli of hypersurfaces in Pn

Let us try to make the theory concrete by some examples. We will
study hypersurfaces in Pn modulo the natural GL(n+ 1)-action.
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5.3.1 Classical invariants and discriminants

A form of degree d (an element of H0(Pn,OPn(d))) in coordinates
x0, . . . , xn can be written

f =
∑
|I|=d

aIx
I ,

in “multiindex” notation. Note that there are
(
n+d
d

)
values of I.

Denote by Vn,d the vector space of polynomials of degree d (syn-
onymous with H0(Pn,OPn(d))), and by Vn,d its associated affine
space.

The group GL(n+1) acts on Vn,d on the right by f(x) 7→ f(gx).

Remark. This is really a right action. Recall that a group action
is a right action if f · (gh) = (f · g) · h.

In fact, we have

(f · (gh))(x) = f(ghx) = (f · g)(hx) = ((f · g) · h)(x),

so this is really a right action.

Explicitly, this can be written as follows: Let F denote the
“generic” d-form, that is a form with the coefficients replaced by
variables (that would be forms on Pn × A(n+d

d )).
Then a matrix g = (gij) ∈ GL(n+ 1) transform F to

F =
∑
|I|=d

aI(
∑

g0jxj)
i0(
∑

g1jxj)
i1 . . . (

∑
anjxj)

in .

After rearranging, this can be written as

F =
∑
|I|=d

ξI(g)xI ,

where the ξI(g) are polynomials in gij and aI , linear in the aI . Thus
the assignment aI 7→ ξI(g) is [representation ??].

Lets do a very concrete example.

Example 5.17 (Pairs of points on the Riemann sphere, d = 2,
n = 2). A form of degree 2 on P1 is given by a polynomial

F = a20x
2
0 + a11x0x1 + a02x

2
1.

A generic element of GL(2) looks like

g =

g11 g12

g21 g22

 .
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This g acts on x by sending it to g11x0 + g12x1. Thus it can be
computed that the action on F is given by

F · g = (a20g
2
11 + a11g11g21 + a02g

2
21)x20

+ (a20g11g12 + a11g12g21 + a11g11g22 + 2a02g21g22)x0x1

+ (a20g
2
12 + a11g12g22 + a02g

2
22)x21.

Wee see that the ξI(g) are linear combinations of polynomials in gij ,
so we can write the transformation in matrix form:

ξ(g) =


g211 2g11g12 g212

g11g21 g12g21 + g11g22 g12g22

g221 2g21g22 g222

.
This is a representation of GL(2) on V1,2 (a map ρ : GL(2) →
GL(3)). It would be a fun exercise to describe the its irreducible
components (an educated guess would be that it splits into two
irreducible representations, one given by the forms with a double
root, and one given by the forms with distinct roots).

By the way, I didn’t compute this by hand. Here is how to do it
in Macaulay2.

R = QQ[x_0,x_1, a,b,c, g_11,g_12,g_21,g_22]
h = map(R,R,{g_11*x_0+g_12*x_1, g_21*x_0+g_22*x_1,

a,b,c,g_11,g_12,g_21,g_22})
F = a*x_0^2+b*x_0*x_1+c*x_1^2
trans = h F
(M,C) = coefficients(trans,

Monomials => {x_0^2,x_0*x_1, x_1^2}, Variables => {x_0,x_1})
(V,G0) = coefficients(C_0_0,

Monomials => {a,b,c}, Variables => {a,b,c})
(V,G1) = coefficients(C_0_1,

Monomials => {a,b,c}, Variables => {a,b,c})
(V,G2) = coefficients(C_0_2,

Monomials => {a,b,c}, Variables => {a,b,c})
G = G0 | G1 | G2

The last computation, G, is the matrix ξ(g) above. To get LATEXcode,
type tex G and copy. F

Example 5.18 (Conics in the plane, d = 2, n = 3). To get a sense
of how complicated things get with a slight increase in dimension,
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this is how ξ(g) looks in the case of conics in P2.

g211 2g11g12 2g11g13 g212 2g12g13 g213

g11g21 g12g21 + g11g22 g13g21 + g11g23 g12g22 g13g22 + g12g23 g13g23

g11g31 g12g31 + g11g32 g13g31 + g11g33 g12g32 g13g32 + g12g33 g13g33

g221 2g21g22 2g21g23 g222 2g22g23 g223

g21g31 g22g31 + g21g32 g23g31 + g21g33 g22g32 g23g32 + g22g33 g23g33

g231 2g31g32 2g31g33 g232 2g32g33 g233


There is some symmetry in the equations, but for modern mathe-
maticians, these equations are very scary. At least to handle with
bare hands. F

Definition 5.19. If a homogeneous polynomial F satisfies F (xg) =
F (x) for all g ∈ SL(n+1) (in other words, if it is SL(n+1)-invariant
for the right action of SL(n+1)), then we call it a classical invariant.

�

Let Hnd := PVnd. This is the Hilbert scheme of hypersurfaces of
degree d in Pn.

Proposition 5.20. For a homogeneous polynomial F ∈
⊕

iH
i(Hn,d,OHn,d

(i)) =
k[Vn,d], the following are equivalent:

1. F is a classical invariant.

2. The subvariety F = 0 in Hn,d is GL(n+ 1)-invariant.

Proof. The easiest direction is i ⇒ ii). That the subvariety F = 0
is GL(n + 1)-invariant, means that F · g = λF for some λ 6= 0 for
each g ∈ GL(n + 1). Now, each g ∈ GL(n + 1) can be written as
the product of a diagonal matrix and an element of SL(n+ 1) (the
diagonal matrix is n

√
det gI). Write this as g = λh. Then

F (gx) = F (λhx) = F (hx) · λ = F (x) · λ = F (λx) = λnF (x).

Thus F = 0 is GL(n+ 1)-invariant.
For the other direction: the ideal 〈F 〉 is GL(n + 1)-invariant.

Thus the one-dimensional k-vector space spanned by F is a one-
dimensional representation of GL(n+ 1). But this is a character of
GL(n+ 1), and by Lemma 4.7, we know that F must have the form
λ detX, and this is clearly SL(n + 1)-invariant. [[Is this correct??
Sound too good to be true]]
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We will define the discriminant, but we need some discussion
first. LetX ⊆ Pn be the hypersurface given by f ∈ H0(OPn ,OPn(d)).
Then recall that p ∈ Pn is a singular point of X if it is a solution of

∂f

∂x0
=

∂f

∂x1
= . . . =

∂f

∂xn
= 0.

If these have no solutions in Pn, then we say that X is smooth.
Denote by Hsing

n,d ⊂ Hn,d the subset of singular hypersurfaces
X ⊂ Pn. Consider the set

Z := {(p,X) | p ∈ Pn is a singular point on X ⊂ Pn}.

This is an algebraic variety given by the n+ 1 equations

∂

∂x0

∑
I

aIx
I = . . . =

∂

∂xn

∑
I

aIX
I = 0.

In particular, Z is closed. Let ψ : Z → Pn and ϕ : Z → Hn,d be the
projections. By definition, the image of ϕ is Hsing

n,d . On the other
hand ϕ−1(p) is the set of all hypersurfaces that are singular at p,
and in Hn,d, this is defined by n+ 1 linear equations (the equation
above is linear in the aI). Thus

dimZ = dimPn + dimφ−1(p)

≥ n+ dimHn,d − (n+ 1)

= dimHn,d − 1.

In fact, equality holds. The reason is this: first of all, the image
of ϕ is a proper subset of Hn,d, since there exist nonsingular hy-
persurfaces in any dimension3. Also, dimZ = dimHsing

n,d , because
1), Z surjects onto Hsing

n,d , and 2) because of the following fact: if
f : X → Y is a dominant morphism of integral schemes of finite type
over k, then the dimension of the fibers f−1(y) (for y ∈ f(X)), sat-
isfy dim f−1(y) ≥ dimX − dimY . In our case f−1([X]) = SingX,
so if we can prove that there exists hypersurfaces with isolated sin-
gularities, then we get dimHsing

n,d ≥ dimZ. This is true, consider for
example xk1 + . . .+ xkn = 0 (x0 is left out)4.

Thus Hsing
n,d is itself a hypersurface, so it is defined by a unique

(up to scalar) homogeneous polynomial.

Definition 5.21. The defining equation of Hsing
n,d is called the dis-

criminant of forms of degree d on Pn. �

3Take the Fermat hypersurface xl
0 + . . .+ xl

n = 0
4See for example [2], page 95, Exercise 3.22. See also [1], Theorem 11.12.
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Clearly Hsing
n,d is invariant under GL(n+ 1), so:

Corollary 5.22. The discriminant D is a classical invariant.

Example 5.23. We continue on Example 5.17. The hypersurface
X is singular if and only if

∂F

∂x0
= 2a20x0 + a11x1 = 0

∂F

∂x1
= a11x0 + 2a02x1 = 0

But this is a linear equation, having a non-trivial solution if and
only if the determinant 4a20a02 − a211 is zero.

This should remind everyone of the abc-formula from early child-
hood. F

6 Moduli theory
The problem of moduli theory is classification. This can be made
precise in various ways, depending upon the sophistication of the
reader.

Let V be an n-dimensional vector space. Suppose you want to
classify k-planes in V . Up to isomorphism, this is trivial, since
all vector spaces are determined once the integer k is given. In that
sense, the moduli space is just the point {k}. However, let us instead
look at the whole set

G(k, n) = {L | L is a k-plane in V }.

So far, this is just a set. What does it mean to give a k-plane? It is
certainly sufficient to give a spanning set, i.e. k linearly independent
vectors in V . These are elements of an open subset U of Akn. But
this is redundant: we have an action of G = GLd on Akn. Two
elements v, v′ ∈ Akn represent the same k-plane if and only if v = gv′

for g ∈ GLd.
We are thus led to ask for the existence of U/GLd. It turns out

that this object exists. It is a projective variety called the Grass-
mannian G(k, n).

6.1 Some GIT
[5]

Suppose we are in the situation of an reductive algebraic group
G acting on a projective variety X. Assume further that G is a
subgroup of SL(n+ 1,C).
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The construction of GIT quotient: the group acts on eachH0(X,OX(r)).
Then we simply define X/G to be

Proj

(⊕
r

H0(X,OX(r))G

)
.

Lemma 6.1. ⊕rH0(X,OX(r))G is finitely generated.

Lemma 6.2. Hilberts basis theorem + ...

Definition 6.3. A point x ∈ X is semistable if there exists an
s ∈ H0(X,Ox(r))G with r > 0 such that s(x) 6= 0. �

Point which are not semistable are unstable.

Definition 6.4. A semistable point x ∈ X is stable if⊕rH0(X,Ox(r))G

separates orbits near x and the stabiliser of x is finite. �

By “separates orbits near x” we mean the following: given any
v ∈ TxX\Tx(G.x) there is another element in H0(X,Ox(r))G whose
derivative with respect to v is nonzero.
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